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Hui-Heng Lin1–6,*, Koken Hirose7, Yifan Zhu8

Introduction

The neurodegenerative disorders result from loss of the structure and functions of neurons, 
causing brain dysfunctions and cognitive problems, e.g., the loss of memory, and incapability of 
linguistic ability. Such cognitive problems are threatening patients’ daily life and may lead to death. 
The neurodegenerative diseases have multiple subtypes, including but not limited to, the Alzheimer’s 
disease, the Parkinson’s diseases, the Huntington’s disease, the Batten disease, and the Amyotrophic 

Abstract
Background: Neurodegenerative diseases, such as the Alzheimer and the Parkinson’s, currently lack 
effective pharmacotherapies. They are posing a significant global health threat, and it is urgent to discover 
and develop effective pharmacotherapies for patients. However, due to pathogenic mechanisms are poorly 
understood, the interventional drug clinical trials for neurodegenerative diseases have high failure rates. 

Methods: This study explored a new approach for discovering pharmacotherapies for neurodegenerative 
diseases—repurposing those anti-cancer agents which could potentially treat neurodegenerative 
diseases. The core implication is that existing anti-cancer drugs, which have already undergone extensive 
safety and efficacy testing, could be repurposed, potentially accelerating the drug development pipeline 
for neurodegenerative diseases. By leveraging the hypothesized inverse correlation between cancer 
and Alzheimer’s, and applying a rigorous computational systems biology approach (specifically, the link 
prediction on a heterogeneous bipartite drug-disease network), the study has unveiled promising anti-
cancer drug-neurodegenerative disease potential therapeutic association drug-disease pairs. Eight distinct 
link prediction algorithms were rigorously tested on the heterogenous bipartite drug-disease therapeutic 
linkage network. Predictors’ performance was assessed using a leave-one-out cross-validation strategy, 
analyzing the mean and standard deviation of rank scores.

Results: The Rooted PageRank predictor emerged as the most effective algorithm during benchmarking 
and was subsequently chosen for predicting novel drug-disease therapeutic association linkages. The 
identification of specific drug-disease pairs, such as Oblimersen sodium for Alzheimer’s disease, validated 
by existing literature, provides concrete starting points for further preclinical and clinical investigations.  

Conclusions: This innovative computational approach not only broadens the scope of potential therapeutic 
molecules for neurodegenerative diseases, pinpointing anti-cancer drugs as potential therapeutic 
candidates, but also validates the utility of systems biology and network medicine in identifying novel 
drug-disease therapeutic relationships, ultimately providing concrete starting points for further preclinical 
and clinical investigations for neurodegenerative disease pharmacotherapies, and offering hope for new 
treatments for millions affected by neurodegenerative disorders.
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lateral sclerosis. Amongst, the Alzheimer’s disease and the Parkinson’s 
disease are the most typical ones and the most commonly seen 
and heard syndromes. In fact, the Alzheimer’s disease is the most 
common neurodegenerative disorder and the Parkinson’s disease is 
the second one [1,2]. 

Thanks to the long-term efforts of scientists, factors contributing 
to neurodegenerative diseases have been partially found. For example, 
the relevant genetic mutations and epigenetic effects were identified 
[3,4]; the aggregation of misfolded proteins, such as the tau protein 
and beta amyloid, were detected in neurodegenerative animal 
models [5,6]; the mitochondrial dysfunctions and the programmed 
cell death were also shown to associate with the neurodegenerative 
diseases [7,8].

Specifically, for Alzheimer’s disease, a number of hypotheses 
have been postulated to explain the genetic causes of it. The two 
of the most representative ones are amyloid hypothesis and tau 
hypothesis. The amyloid hypothesis suggests that the deposition of 
the extracellular beta amyloid causes Alzheimer’s disease [9], and 
the tau hypothesis claims the abnormalities of tau protein cause the 
disease [10]. These hypotheses have guided pharmaceuticals to invest 
great amounts of resources and efforts into developing therapies for 
treating the disease. For example, Eli Lilly developed a monoclonal 
antibody Solanezumab based on the beta amyloid hypothesis and 
methylthioninium chloride was developed for inhibiting the tau 
protein aggregation [11–13]. Nevertheless, none of them is able to 
completely cure Alzheimer’s disease. Solanezumab does not work 
on the patients who are already suffering the disease while the 
methylthioninium chloride failed in clinical trial phase III [14]. 
Another clinical trial of Verubecestat, an inhibitor of the upstream 
proteins of the beta amyloid, was also stopped in early 2017. So did 
the Aducanumab in 2019 [15,16]. 

Above disappointing facts urge researchers to find new ways 
for drug discovery of Alzheimer’s disease as well as other types of 
neurodegenerative diseases. Drug repositioning could be a favorable 
strategy for this purpose [11–14]. Repositioning discovers new 
therapeutic indications of existed drugs or chemical compounds, 
which saves great amount of resources and efforts than developing 
a novel drug from the very beginning [17,18]. There are succeeded 
drug repositioning cases [19,20]. Besides the famous story of 
Pfizer’s Viagra, two other examples are Requip and Colesevelam. 
Requip and Colesevelam are originally anti-Parkinsonion agent 
and hyperlipidemia therapy and then repositioned for restless leg 
syndrome and type 2 diabetes, respectively.

Combining drug repositioning methods with the interesting 
evidences suggesting the inverse correlation between cancers and 
neurodegenerative diseases [21,22], researchers tried to reposition 
the existed anti-cancer drugs for neurodegenerative diseases, e.g., 
Carmustine [19], copper (II) chelating molecules [20], Tamibarotene 
[17], etc [18]. While relatively simpler than ab initio drug discovery, 
such in vitro and in vivo experiments are still laborious, time-
consuming as well as with risks of failure. Therefore, before initiating 
wetlab experiments, it is necessary and of vital importance to select 
the high potential drug candidates from the compound pool. To this 
end, in silico systems biology approaches help via enabling large scale 
data analysis and computational predictive analysis.

In this work, in order to predict anti-cancer drug that has 
potential to work for neurodegenerative diseases, relevant drug and 

disease data were collected and similarity analyses were carried out for 
drug pairs and disease pairs. After data integration, a heterogeneous 
bipartite drug-disease network was constructed, and then Leave-
One-Out and rank score were used to evaluate the predictive 
performance of different link predictors. On selecting the one with 
best predictive performance, i.e., the Rooted PageRank predictor, it 
was used to predict the anti-cancer drugs that could possibly be used 
to treat neurodegenerative diseases via network analyses.

Materials and Methods

Data

Multiple databases were queried for collection of the data of 
neurodegenerative diseases, including KEGG [23], DisGeNet 
[24], the Online Mendelian Inheritance in Man (OMIM) database 
[25], and the Neurodegenerative Disease Variation Database [26]. 
While the number of neurodegenerative diseases with sufficient 
phenotypic data available was limited. For example, 81 kinds of 
neurodegenerative diseases were found in KEGG, while many are 
not well-studied ones and parts of them are found to be rare diseases 
such as Lewy body dementia and Refsum disease. The drug data 
were collected from KEGG [23], DrugBank [27], Drugs@FDA, 
ChEMBL [28], and Pubchem database [29]. Two classes of drug 
data were collected for this study. One was the U.S. FDA-approved 
drugs for treating different sorts of neurodegenerative diseases, such 
as the Donepezil hydrochloride and Galantamine hydrobromide. 
These drugs were approved for treating the Alzheimer’s disease, while 
none of them can completely cure the Alzheimer’s disease. 

For the purpose of similarity analysis and network construction, 
data screening was conducted. Neurodegenerative diseases lacking 
phenotypic data and those not associated with U.S. FDA-approved 
drugs were excluded from further data processing. Finally, we narrowed 
down the number of neurodegenerative diseases to be studied to 32 
types, and we had 33 pairs of such drug-disease therapeutic relations 
including 29 drugs and 6 types of neurodegenerative diseases. The 
other class of drug data that required for this study was the anti-
cancer drugs, which is also termed Antineoplastic agents under the 
category World Health Organization-defined Anatomic Therapeutic 
Chemical Classification (ATC) system. With the code “L01”, the 
anti-cancer drugs were located in ATC system. The query of ATC 
code “L01” against PubChem returned 1,301 hits of antineoplastic 
compounds, and 382 annotated with the term “Pharmacology 
action” were downloaded for further processing. Removal of invalid 
and structurally redundant drug data gave 171 anti-cancer drugs to 
our valid dataset of anti-cancer drugs.

Similarity analysis gives highly similar node pair a linkage in the 
network and hence making the network topological information 
richer and the better basis for hidden link detections through link 
predictors. To this end, the pair-wise structure comparison of total 
201 drugs (30 U.S. FDA-approved drugs treating neurodegenerative 
disease and 171 anti-cancer drugs) was carried out using in house 
scripts and ChemmineR tool [30]. Molecular descriptor of atompair 
and fringerprint were applied to vectorize the chemical structure 
of drugs and the Tanimoto Similarity Coefficient [31] was used 
to measure the structure similarity between a pair of drugs. And 
for the 32 kinds of neurodegenerative diseases whose phenotypic/
symptom data were available, using in house script and dSimer 
[32], the phenotypic similarity score of disease pairs was represented 
and measured by cosine similarity coefficient. Similar to Tanimoto 
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Similarity Coefficient, the higher value of cosine similarity coefficient 
(from 0 to1) indicates a stronger similarity. Upon aforementioned 
similarity analysis for both drug pairs and disease pairs, two matrices 
of similarity score were combined with the bipartite approved drug-
disease association data so as to further generate a large adjacency 
matrix of a heterogeneous bipartite graph for the purpose of link 
prediction. 

Link predictors

Link prediction methods predict if hidden links or unobservable 
edges exist in network. A simple definition could be like: given 
a graph G = (V, E), where V is the set of nodes and E is the set 
of the edges in the graph G. If the set U denotes all the possible 
edges of G, the link prediction problem is to detect and rank the 
likelihood of edges from the set U – E. Note that in order to test 
the predictive performance of link predictors, E can be divided in to 
training set ET and probing/validation set EP. Therefore, ET∪EP = E 
and EP ∩ ET = Φ. In this study, the drug repositioning problem can 
be formulated to the link prediction problem. i.e., in drug-disease 
network, the likelihood of a link between an anti-cancer drug node 
and a neurodegenerative disease node can be predicted. If there exists 
such a link, we consider therapeutic effect may exist between the 
connected anti-cancer drugs and the neurodegenerative diseases. 
We chose network link prediction methods for computational 
drug repositioning purpose because of its advantages of being able 
to directly apply to network models and its low requirements on 
computation costs, compared with other indirectly link prediction 

methods, for example, the machine learning approaches which 
require higher computation costs. What is more, machine learning 
methods also have higher and more complicated requirements for 
generating and preparing the datasets, such as the feature datasets of 
different neurodegenerative diseases.

In this work, 8 types of link predictors were chosen. They are the 
Jaccard Similarity Coefficient [33], the Resource Allocation Index 
[34], the Degree Product Index [35,36], Katz Index [37], SimRank 
Predictor [38], Rooted PageRank Predictor [39], Graph Distance 
Predictor [40] and the Random predictor. All link predictors 
predict links using the topological structures of networks. Amongst, 
predictor of Jaccard Similarity Coefficient, Resource Allocation 
Index and Degree Product Index are the class of common neighbors-
based link predictors, and their predictions rely on local topological 
similarities. The theoretical basis of the common neighbors index 
lies in the neighborhood similarity between two different nodes. 
Basically, it is considered that two nodes are likely to have a link to 
each other if they share greater number of common neighbor nodes. 
The greater the number of the common neighbors is, the more likely 
that two nodes have link between them. The Katz Index and Graph 
Distance Predictor can be classified into path-based link predictor. 
These two predictors count longer edges or paths for network link 
predictions. Rooted PageRank Predictor and SimRank Predictor 
are eigenvector-based link predictors while the Random Predictor 
predicts links in random way, and it served as a control reference. 
Features of aforementioned predictors were summarized in Table 1. 

Table 1. Description of link predictors used in this study.

Predictor Description

Jaccard Similarity 
Coefficient

A classic type of common neighbors-based link predictors and has been widely applied in link prediction studies 
of multi-disciplines. The value ranges from 0 to 1 and depends on the ratio of the number of two nodes’ shared 
common neighbors (intersection of neighbor nodes) to the number of sum (union of neighbor nodes) of two nodes’ 
neighbor nodes [31,33,41].

Resource Allocation 
Index

A modified type of common neighbors-based link predictors, it is defined as the reciprocal of the commonly shared 
neighbor nodes of a pair of nodes [34].

Degree Product Index The degree product index is the outcome of the multiplication of two nodes’ number of neighbor nodes. It is based 
on the hypothesis of preferential attachment model that, nodes with larger nodal degree numbers tend to form new 
links so as to accumulate higher degree number according to the power-law distribution [35,36].

Katz index Katz index is a type of path-based link predictors, and it considers all the possible path and distance from one node 
to another [37]. Katz index is considered a kind of extended common neighbors-based predictor. Unlike the common 
neighbors-based predictors, which only consider the node of 1-step away as neighbor, nodes of multiple steps away 
from the seed nodes are also considered as neighbors in link prediction. Katz index therefore partially overcomes 
the limitation of common neighbors-based predictors that they fail to analyze two nodes without (1-step) common 
neighbors. While Katz index’s consideration of all the possible paths and connection patterns in the networks makes 
the computational requirements become high.

Graph Distance Predictor Graph distance predictor is also a kind of path-based link predictors. It measures a pair of nodes’ path-length and 
weights of path [40].

Rooted PageRank 
Predictor

Rooted PageRank method works via an intuitive mechanism based on hierarchical relations of network [39]. For all 
nodes in a network, Rooted PageRank algorithm considers each single node of the network as the root node and 
then scores and ranks all other nodes against the root node according to specific hierarchical function. After all 
iterations are done, the top-ranked node pairs could be considered the potential links. The Rooted PageRank is in fact 
a kind of modification form or extension of the original PageRank algorithm [42].

SimRank Predictor SimRank uses the network topological structure to detect similarity [43]. It supposes that two objects are similar if 
they have similarity topological structures or referred by similar objects. SimRank goes through all the node pairs of 
the network and hence is usually computation-intensive.

Random Predictor The Random predictor predicts links in random way, and it served as a control reference to other predictors’ 
outcomes.
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Metric and link prediction

In order to evaluate the predictive performances of different 
predictors, the Leave-One-Out strategy [44], combined with rank 
score was selected to be the metric. The combination of Leave-
One-Out strategy with “Mean value ± Standard Deviation” of the 
rank score worked via the following way. For each round, one of 
the known drug-disease edge was removed from the drug-disease 
network. And then link predictor was applied to the network, and 
the score (or likelihood) of all the unobserved edges including the 
removed one at the beginning was computed and subsequently 
ranked from higher to lower score order. Locate the ranked position 
of the deleted edge which serves as a positive reference for predictors’ 
performance evaluation. If the known and deleted edge had high 
score and ranked at the top of the predicted drug-disease edge score 
list, the applied predictor could be considered an effective one. Else, 
the predictor was not. The number of ranked position of the deleted 
edge divided by the total number of edge predicted is the value of 
rank score. It could be easily figured out that the value of rank score 
ranges from 0 to 1, and simply the smaller value the rank score is, the 
better the predictor’s performance is. Repeat above actions until all 
the known drug-disease edges have been deleted for once. Suppose 
there are totally N of such edges. And then calculate the “Mean 
value ± Standard Deviation” of these N rank scores of each predictor. 
In such ways, the performances of different link predictors could 
be benchmarked quantitatively. Similarly, smaller values of “Mean 
value ± Standard Deviation” indicate the better and more stable 
performance of a predictor.

Upon identification of the best link predictor through 
benchmarking, the best one—the Rooted PageRank predictor, was 
applied to the full network dataset so as to predict potential link 
between anti-cancer drug and neurodegenerative disease. Similarly, 
the predicted anti-cancer drug-neurodegenerative disease association 
edges were ranked according to the scores returned by algorithm. 
And then top-ranked predictive drug-disease pairs were considered 
the potential anti-cancer drugs that have effect on neurodegenerative 
disease. Literature databases were subsequently searched in order to 
find support for our prediction.

Results

Heterogeneous bipartite drug-disease network

Through data screening, neurodegenerative diseases without 
phenotypic data and disease that do not have U.S. FDA-approved 
drugs were removed. As a result, 32 types of neurodegenerative 

diseases and 33 pairs of such drug-disease therapeutic relations 
including 29 drugs and 6 types of neurodegenerative diseases 
were retained for further analyses. The diseases included were the 
Alzheimer’s disease, Amyotrophic Lateral Sclerosis, Huntington’s 
disease, Parkinsonian disorder/syndrome, Parkinson’s disease, and 
Postherpetic neuralgia (Supplementary Table S1). These data 
indicate the existence of multiple “me-too” drugs for only small 
number of specific neurodegenerative diseases and a large number of 
neurodegenerative diseases lack pharmacotherapies yet.

The disease-disease phenotypic similarity was analyzed, as 
described in the method section. Table 2 listed the top-ranked 8 most 
similar neurodegenerative disease pairs. Amongst, the Parkinson’s 
disease and Parkinsonian disorder had the highest score of cosine 
similarity coefficient (about 0.92) in terms of phenotypic similarity. 
Generally, most of the disease pair-wise cosine similarity coefficients 
were low (around 0.1), indicating that most of these diseases did 
not share lots of similar or common phenotypes/symptoms. Several 
cases of low similarity disease pairs were also found. Such as the 
disease pair of Cockayne Syndrome and the Parkinsonian Disorders 
(whose similarity coefficient was zero) and the disease pair of Lewy 
Body Disease and Canavan Disease (whose similarity coefficient 
was lower than 0.02). For molecular structure similarity of drug 
pairs, the Tanimoto Similarity Coefficient was used to measure the 
similarity, while most of the coefficient values were low. Specifically, 
it was expected that high similarity between approved drugs treating 
neurodegenerative diseases and anti-cancer drug could be found, 
as it is more likely for such anti-cancer drugs to be associated to 
neurodegenerative disease nodes in the network link predictions.

Through integration of drug-disease association data and 
similarity data, a heterogeneous bipartite drug-disease network 
was constructed and visualized (Figure 1). It was heterogeneous 
because two kinds of nodes and three types of edges presented in 
the network. There were 201 drug nodes in the network, which 
consisted of 171 anti-cancer drugs and 30 FDA-approved drugs for 
treating neurodegenerative diseases. Accordingly, another 32 nodes 
represented different neurodegenerative diseases in the network. 

Rooted PageRank performed the best

As described in the method section, different predictors rank 
scores generated under the Leave-One-Out metric were visualized 
via violin plot (Figure 2), and their mean values and standard 
deviations were also calculated and shown in Table 3. The Common 
neighbors-based predictors, i.e., Jaccard Similarity Coefficient, 
Resource Allocation Index, and Degree Product Index had greater 

Table 2. Top-ranked 8 pairs of neurodegenerative diseases with high phenotypic similarity.

ID Disease A Disease B Cosine Similarity Coefficient

1 Parkinson’s Disease Parkinsonian Disorders 0.92

2 Spinocerebellar Degenerations Cerebellar Ataxia 0.88

3 Huntington Disease Neuroacanthocytosis 0.86

4 Spinocerebellar Degenerations Machado-Joseph Disease 0.84

5 Spinocerebellar Ataxias Machado-Joseph Disease 0.80

6 Machado-Joseph Disease Friedreich Ataxia 0.79

7 Spinocerebellar Degenerations Friedreich Ataxia 0.79

8 Spinocerebellar Ataxias Spinocerebellar Degenerations 0.79
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  Figure 1. Visualization of the heterogeneous bipartite drug-disease network constructed. The constructed bipartite network contains two kinds 
of nodes: drug and disease nodes. The anti-cancer drugs were colored in green, and the U.S. FDA-approved drugs for treating neurodegenerative 
diseases were colored in blue. And the neurodegenerative disease nodes were colored red. Three kinds of edges were in the network, i.e., the drug-
disease therapeutic association edges (blue), disease-disease similarity edges (red), and drug-drug similarity edges (green).

 

 
Figure 2. The violin plot of rank scores of predictors. Jaccard Similarity Coefficient, Degree Product Index and Resource Allocation Index had 
unsatisfying performances, while the Rooted PageRank predictor performed the best.
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fluctuation in their rank scores, which indicated their desirable 
and unstable predictive performances. And compared with Degree 
Product Index, the Jaccard Similarity Coefficient and Resource 
Allocation Index’s fluctuations were more obvious. The Random 
predictor generated random scores in the prediction, which served as 
a random reference to other predictors’ results. The rest 3 predictors, 
i.e., SimRank Predictor, Graph Distance Predictor, and Rooted 
PageRank Predictor, had the relatively better performance that other 
predictors. Amongst, the Rooted PageRank has the smallest average 
rank score and standard deviation (Figure 2 and Table 3), and hence 
it has been considered the best predictors.  

Rooted PageRank algorithm scored the best mean and 
standard deviation in terms of predictive performance. Graph 
Distance Predictor has a very close performance, but its rank score 
mean value was slightly larger than that of the Rooted PageRank 
Predictor (Table 3), indicating that, the Graph distance predictor’s 
overall performance failed to outperform Rooted PageRank’s. And 
therefore, Rooted PageRank predictor was the better method for 
current network dataset.

Drug-disease link prediction

Using the best predictor, Rooted PageRank, the probable links 
between drug nodes and disease nodes were predicted. The top-
ranked hits were selected and listed in Table 4. Three anti-cancer 
drugs were predicted to be effective for postherpetic neuralgia. They 
were Vincristine, Vincristine sulfate, and Vinblastine. For these 
predictive therapeutic results, relevant literature supports were found. 
Other predictive results were, Venetoclax for Parkinson’s disease, and 
Oblimersen sodium for Parkinson’s disease, Parkinsonian disorder, 
and Alzheimer’s disease.

Postherpetic neuralgia is a kind of persistent nerve pain resulting 
from shingles and herpes varicella-zoster virus. The patients of it are 
with main symptoms of headaches, numbness, pain, burning, etc 
[48]. According to our predictive results, 3 anti-cancer drugs were 
predicted to have potential treatment effects on the postherpetic 
neuralgia. They are Vincristine, Vincristine sulfate, and Vinblastine 
(Table 4). Vinblastine is an anti-cancer drug of tubulin modulator. 
It is used for generalized Hodgkin’s disease, lymphocytic lymphoma, 

Table 3. Predictors’ performance indication by mean and standard deviation of rank scores.

Link predictor Mean value ± standard deviation of rank scores

Jaccard Similarity Coefficient 0.69±0.45

Resource Allocation Index 0.68±0.47

Degree Product Index 0.27±0.26

Katz Index 0.14±0.17

Graph Distance Predictor 0.12±0.14m

Rooted PageRank Predictor 0.11±0.14

SimRank Predictor 0.16±0.21

Random Predictor 0.50±0.32

Table 4. The list of anti-cancer drugs predicted to be the potential pharmacotherapies for different neurodegenerative diseases via the Rooted 
PageRank predictor.

Neurodegenerative 
disease

Anti-cancer drug Description Reference of anti-neurodegeneration 
study of relevant anti-cancer drug

Postherpetic neuralgia Vincristine Preventing tublin aggregations and disrupting 
metaphase in cell cycle. It is used to treat leukemia, 
neuroblastoma, Hodgkin’s disease, etc.

Dowd et al., 1999 [45]

Vincristine Sulfate Sulfate salt of Vincristine. With better bioavailability 
and pharmacokinetic features than Vincristine.

Mora et al., 2016 [46]

Vinblastine Vinca alkaloid of Vincristine. Has similar anti-cancer 
mechanisms to Vincristine. Used to treat brain cancer, 
melanoma and Hodgkin’s lymphoma, etc.

Opavsky et al., 1989 [47]

Parkinson’s disease Venetoclax Venetoclax weakens the survival of cancer cells via 
targeting and blocking Bcl-2 protein’s functions. It is 
used to treat lymphoma and leukemia. Side effects 
exist.

Oblimersen sodium It is a bcl-2 antisense oligodeoxynucleotide. It targets 
Bcl-2 mRNA, inhibits the formation of Bcl protein and 
hence weakens the survival of cancer cells. It is used 
to treat breast cancer, lymphoma, etc.

Alzheimer’s disease Oblimersen sodium Same as above.

Parkinsonian disorder Oblimersen sodium Same as above.

A part of the predictive top-hits have the supporting evidence from literature and reports.
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breast cancer, neuroblastoma, etc. In fact, according to literature 
review, there is already report about the usage of Vinblastine to treat 
the postherpetic neuralgia [47]. This is a literature evidence which 
indicates the good performance and predictive power of our method. 
For the other two predicted anti-cancer drugs, the Vincristine sulfate 
is the sulfate salt of Vincristine, and Vincristine sulfate is used to 
treat neoplasms and lymphoma. Vincristine is used to treat acute 
lymphocytic leukemia and etc. While due to poor oral bioavailability, 
Vincristine was formulated to become Vincristine sulfate so as to 
obtain better pharmacokinetic results [46]. Interestingly, Vincristine 
was also reported to be used for trying to cure postherpetic neuralgia 
patients [45]. This is another supporting evidence of the good 
predictive power of our prediction framework.

Discussion

Neurodegenerative disorders pose a significant global challenge 
because of the brain’s immense complexity, which makes in-depth 
research difficult. We’ve also observed that some neurodegenerative 
conditions are rare diseases, often receiving minimal research 
attention. Examples include Lewy body disease and Huntington’s 
disease. Currently, a substantial number of individuals suffer from 
complex or rare diseases due to a lack of effective treatment.

The traditional drug discovery approach for neurodegenerative 
diseases, particularly Alzheimer’s disease, has often fallen short. 
This highlights the urgent need for alternative strategies. With an 
increasing number of approved drugs showing effects on additional 
molecular targets or therapeutic uses, it’s a smart move to explore 
disease-oriented drug repositioning, especially when conventional 
methods struggle with hard-to-study and hard-to-treat diseases.

Drug repositioning offers several benefits over developing new 
drugs from scratch (i.e., the de novo drug discovery and development 
approach), such as lower costs in terms of time and resources. 
These advantages, along with the success rate of repositioning, can 
be further boosted by computational analytics. For instance, large-
scale computational data screening and analysis can help select 
high-potential drug candidates, thereby saving resources and costs 
by reducing the number of chemicals needing experimental testing. 
Furthermore, computational predictive analyses, like machine 
learning, can forecast whether chemicals and biomolecules will 
interact effectively. These computational approaches are becoming 
increasingly vital and significant in drug repositioning efforts.

In the predictive results of this work, Venetoclax used for treating 
chronic lymphocytic leukemia was predicted to have potential 
treatment effect on the Parkinson’s disease. As an anti-cancer drug, 
Venetoclax works via selective suppression on Bcl-2, an anti-apoptotic 
protein. Bcl-2 in fact exists in wide range of cell types, including 
the neural cells [49–51]. And the apoptosis is one of the possible 
reasons causing neurodegenerative disease including the Parkinson’s 
disease. Potential associations may exist between Venetoclax and the 
Parkinson’s disease via Bcl-2 regulations and apoptotic processes. 
Another anti-cancer drug for chronic lymphocytic leukemia and 
multiple myeloma, i.e., the Oblimersen sodium, was also predicted 
to associate with the Alzheimer’s diseases, the Parkinson’s disease 
and the Parkinsonian disorder. Similar to Venetoclax, Oblimersen 
sodium is also a Bcl-2 modulatory protein, and it works via the 
anti-sense mechanisms and regulations of the cellular apoptotic 
processes [52]. It is likely that, through such apoptosis regulatory 
mechanisms, aforementioned 3 kinds of neurodegenerative diseases 

could be modulated by Oblimersen sodium. Furthermore, molecular 
modelling methods such as molecular docking analysis are good 
in silico way to further analyze the molecular binding interaction 
models of drug-target pairs, which could be likely to provide 
support for our prediction. However, neither the Alzheimer’s disease 
nor the Parkinson’s disease has the clear or confirmed drug target, 
which gives difficulty to conduct the molecular docking analysis of 
predicted drug-target association pairs. 

While our network analysis successfully identified several anti-
cancer drugs with potential for treating neurodegenerative diseases, 
further validation is crucial. We need to conduct in vitro and in vivo 
experiments to confirm these predicted therapeutic effects.

Additionally, exploring other link prediction methods is a 
valuable next step. Every method has its strengths and weaknesses, 
and no single one is perfect. For instance, machine learning and 
community-based link prediction methods offer a variety of 
predictors with different underlying principles. Applying these 
diverse predictors could lead to the discovery of even more promising 
drug repurposing opportunities.

Conclusions

This research explored a novel strategy to identify anti-cancer 
drugs with potential for treating neurodegenerative diseases, 
particularly Alzheimer’s. We built a heterogeneous bipartite drug-
disease network by analyzing similarities between drug pairs 
and disease pairs. We then applied and evaluated eight different 
prediction methods on this network. Through rigorous testing 
using a leave-one-out strategy and rank scores, Rooted PageRank 
emerged as the most effective predictor. We used Rooted PageRank 
to identify anti-cancer drugs likely to have therapeutic effects on 
neurodegenerative diseases. Our computational and predictive 
analyses uncovered several high-potential drug-disease associations, 
including Vincristine-Postherpetic neuralgia and Oblimersen 
sodium-Alzheimer’s disease. We found further literature evidence 
supporting these predictions.

Ultimately, this work demonstrates a successful computational 
and systems biology approach for drug repurposing, identifying 
existing anti-cancer drugs as promising candidates for treating 
neurodegenerative conditions.  
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