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Abstract

Background: Neurodegenerative diseases, such as the Alzheimer and the Parkinson’s, currently lack
effective pharmacotherapies. They are posing a significant global health threat, and it is urgent to discover
and develop effective pharmacotherapies for patients. However, due to pathogenic mechanisms are poorly
understood, the interventional drug clinical trials for neurodegenerative diseases have high failure rates.

Methods: This study explored a new approach for discovering pharmacotherapies for neurodegenerative
diseases—repurposing those anti-cancer agents which could potentially treat neurodegenerative
diseases. The core implication is that existing anti-cancer drugs, which have already undergone extensive
safety and efficacy testing, could be repurposed, potentially accelerating the drug development pipeline
for neurodegenerative diseases. By leveraging the hypothesized inverse correlation between cancer
and Alzheimer’s, and applying a rigorous computational systems biology approach (specifically, the link
prediction on a heterogeneous bipartite drug-disease network), the study has unveiled promising anti-
cancer drug-neurodegenerative disease potential therapeutic association drug-disease pairs. Eight distinct
link prediction algorithms were rigorously tested on the heterogenous bipartite drug-disease therapeutic
linkage network. Predictors’ performance was assessed using a leave-one-out cross-validation strategy,
analyzing the mean and standard deviation of rank scores.

Results: The Rooted PageRank predictor emerged as the most effective algorithm during benchmarking
and was subsequently chosen for predicting novel drug-disease therapeutic association linkages. The
identification of specific drug-disease pairs, such as Oblimersen sodium for Alzheimer’s disease, validated
by existing literature, provides concrete starting points for further preclinical and clinical investigations.

Conclusions: This innovative computational approach not only broadens the scope of potential therapeutic
molecules for neurodegenerative diseases, pinpointing anti-cancer drugs as potential therapeutic
candidates, but also validates the utility of systems biology and network medicine in identifying novel
drug-disease therapeutic relationships, ultimately providing concrete starting points for further preclinical
and clinical investigations for neurodegenerative disease pharmacotherapies, and offering hope for new
treatments for millions affected by neurodegenerative disorders.

Introduction

The neurodegenerative disorders result from loss of the structure and functions of neurons,
causing brain dysfunctions and cognitive problems, e.g., the loss of memory, and incapability of
linguistic ability. Such cognitive problems are threatening patients’ daily life and may lead to death.
The neurodegenerative diseases have multiple subtypes, including but not limited to, the Alzheimer’s
disease, the Parkinson’s diseases, the Huntington’s disease, the Batten disease, and the Amyotrophic
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lateral sclerosis. Amongst, the Alzheimer’s disease and the Parkinson’s
disease are the most typical ones and the most commonly seen
and heard syndromes. In fact, the Alzheimer’s disease is the most
common neurodegenerative disorder and the Parkinson’s disease is
the second one [1,2].

‘Thanks to the long-term efforts of scientists, factors contributing
to neurodegenerative diseases have been partially found. For example,
the relevant genetic mutations and epigenetic effects were identified
[3,4]; the aggregation of misfolded proteins, such as the tau protein
and beta amyloid, were detected in neurodegenerative animal
models [5,6]; the mitochondrial dysfunctions and the programmed
cell death were also shown to associate with the neurodegenerative

diseases [7,8].

Specifically, for Alzheimer’s disease, a number of hypotheses
have been postulated to explain the genetic causes of it. The two
of the most representative ones are amyloid hypothesis and tau
hypothesis. The amyloid hypothesis suggests that the deposition of
the extracellular beta amyloid causes Alzheimer’s disease [9], and
the tau hypothesis claims the abnormalities of tau protein cause the
disease [10]. These hypotheses have guided pharmaceuticals to invest
great amounts of resources and efforts into developing therapies for
treating the disease. For example, Eli Lilly developed a monoclonal
antibody Solanezumab based on the beta amyloid hypothesis and
methylthioninium chloride was developed for inhibiting the tau
protein aggregation [11-13]. Nevertheless, none of them is able to
completely cure Alzheimer’s disease. Solanezumab does not work
on the patients who are already suffering the disease while the
methylthioninium chloride failed in clinical trial phase III [14].
Another clinical trial of Verubecestat, an inhibitor of the upstream
proteins of the beta amyloid, was also stopped in early 2017. So did
the Aducanumab in 2019 [15,16].

Above disappointing facts urge researchers to find new ways
for drug discovery of Alzheimer’s disease as well as other types of
neurodegenerative diseases. Drug repositioning could be a favorable
strategy for this purpose [11-14]. Repositioning discovers new
therapeutic indications of existed drugs or chemical compounds,
which saves great amount of resources and efforts than developing
a novel drug from the very beginning [17,18]. There are succeeded
drug repositioning cases [19,20]. Besides the famous story of
Pfizer's Viagra, two other examples are Requip and Colesevelam.
Requip and Colesevelam are originally anti-Parkinsonion agent
and hyperlipidemia therapy and then repositioned for restless leg
syndrome and type 2 diabetes, respectively.

Combining drug repositioning methods with the interesting
evidences suggesting the inverse correlation between cancers and
neurodegenerative diseases [21,22], researchers tried to reposition
the existed anti-cancer drugs for neurodegenerative diseases, e.g.,
Carmustine [19], copper (II) chelating molecules [20], Tamibarotene
[17], etc [18]. While relatively simpler than ab initio drug discovery,
such in vitro and in vivo experiments are still laborious, time-
consuming as well as with risks of failure. Therefore, before initiating
wetlab experiments, it is necessary and of vital importance to select
the high potential drug candidates from the compound pool. To this
end, in silico systems biology approaches help via enabling large scale
data analysis and computational predictive analysis.

In this work, in order to predict anti-cancer drug that has
potential to work for neurodegenerative diseases, relevant drug and

disease data were collected and similarity analyses were carried out for
drug pairs and disease pairs. After data integration, a heterogeneous
bipartite drug-disease network was constructed, and then Leave-
One-Out and rank score were used to evaluate the predictive
performance of different link predictors. On selecting the one with
best predictive performance, i.e., the Rooted PageRank predictor, it
was used to predict the anti-cancer drugs that could possibly be used
to treat neurodegenerative diseases via network analyses.

Materials and Methods
Data

Multiple databases were queried for collection of the data of
neurodegenerative diseases, including KEGG [23], DisGeNet
[24], the Online Mendelian Inheritance in Man (OMIM) database
[25], and the Neurodegenerative Disease Variation Database [26].
While the number of neurodegenerative diseases with sufficient
phenotypic data available was limited. For example, 81 kinds of
neurodegenerative diseases were found in KEGG, while many are
not well-studied ones and parts of them are found to be rare diseases
such as Lewy body dementia and Refsum disease. The drug data
were collected from KEGG [23], DrugBank [27], Drugs@FDA,
ChEMBL [28], and Pubchem database [29]. Two classes of drug
data were collected for this study. One was the U.S. FDA-approved
drugs for treating different sorts of neurodegenerative diseases, such
as the Donepezil hydrochloride and Galantamine hydrobromide.
These drugs were approved for treating the Alzheimer’s disease, while
none of them can completely cure the Alzheimer’s disease.

For the purpose of similarity analysis and network construction,
data screening was conducted. Neurodegenerative diseases lacking
phenotypic data and those not associated with U.S. FDA-approved
drugswereexcluded from further data processing. Finally, we narrowed
down the number of neurodegenerative diseases to be studied to 32
types, and we had 33 pairs of such drug-disease therapeutic relations
including 29 drugs and 6 types of neurodegenerative diseases. The
other class of drug data that required for this study was the anti-
cancer drugs, which is also termed Antineoplastic agents under the
category World Health Organization-defined Anatomic Therapeutic
Chemical Classification (ATC) system. With the code “L01”, the
anti-cancer drugs were located in ATC system. The query of ATC
code “LO1” against PubChem returned 1,301 hits of antineoplastic
compounds, and 382 annotated with the term “Pharmacology
action” were downloaded for further processing. Removal of invalid
and structurally redundant drug data gave 171 anti-cancer drugs to
our valid dataset of anti-cancer drugs.

Similarity analysis gives highly similar node pair a linkage in the
network and hence making the network topological information
richer and the better basis for hidden link detections through link
predictors. To this end, the pair-wise structure comparison of total
201 drugs (30 U.S. FDA-approved drugs treating neurodegenerative
disease and 171 anti-cancer drugs) was carried out using in house
scripts and ChemmineR tool [30]. Molecular descriptor of atompair
and fringerprint were applied to vectorize the chemical structure
of drugs and the Tanimoto Similarity Coefficient [31] was used
to measure the structure similarity between a pair of drugs. And
for the 32 kinds of neurodegenerative diseases whose phenotypic/
symptom data were available, using in house script and dSimer
[32], the phenotypic similarity score of disease pairs was represented
and measured by cosine similarity coefficient. Similar to Tanimoto
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Similarity Coefficient, the higher value of cosine similarity coefficient
(from 0 tol) indicates a stronger similarity. Upon aforementioned
similarity analysis for both drug pairs and disease pairs, two matrices
of similarity score were combined with the bipartite approved drug-
disease association data so as to further generate a large adjacency
matrix of a heterogeneous bipartite graph for the purpose of link
prediction.

Link predictors

Link prediction methods predict if hidden links or unobservable
edges exist in network. A simple definition could be like: given
a graph G = (W, E), where Vis the set of nodes and E is the set
of the edges in the graph G. If the set U denotes all the possible
edges of G, the link prediction problem is to detect and rank the
likelihood of edges from the set U — E. Note that in order to test
the predictive performance of link predictors, E can be divided in to
training set E"and probing/validation set E”. Therefore, E'UE"= E
and E”N E" = ®. In this study, the drug repositioning problem can
be formulated to the link prediction problem. i.e., in drug-disease
network, the likelihood of a link between an anti-cancer drug node
and a neurodegenerative disease node can be predicted. If there exists
such a link, we consider therapeutic effect may exist between the
connected anti-cancer drugs and the neurodegenerative diseases.
We chose network link prediction methods for computational
drug repositioning purpose because of its advantages of being able
to directly apply to network models and its low requirements on
computation costs, compared with other indirectly link prediction

Table 1. Description of link predictors used in this study.

methods, for example, the machine learning approaches which
require higher computation costs. What is more, machine learning
methods also have higher and more complicated requirements for
generating and preparing the datasets, such as the feature datasets of
different neurodegenerative diseases.

In this work, 8 types of link predictors were chosen. They are the
Jaccard Similarity Coefficient [33], the Resource Allocation Index
[34], the Degree Product Index [35,36], Katz Index [37], SimRank
Predictor [38], Rooted PageRank Predictor [39], Graph Distance
Predictor [40] and the Random predictor. All link predictors
predict links using the topological structures of networks. Amongst,
predictor of Jaccard Similarity Coefficient, Resource Allocation
Index and Degree Product Index are the class of common neighbors-
based link predictors, and their predictions rely on local topological
similarities. The theoretical basis of the common neighbors index
lies in the neighborhood similarity between two different nodes.
Basically, it is considered that two nodes are likely to have a link to
each other if they share greater number of common neighbor nodes.
The greater the number of the common neighbors is, the more likely
that two nodes have link between them. The Katz Index and Graph
Distance Predictor can be classified into path-based link predictor.
These two predictors count longer edges or paths for network link
predictions. Rooted PageRank Predictor and SimRank Predictor
are eigenvector-based link predictors while the Random Predictor
predicts links in random way, and it served as a control reference.
Features of aforementioned predictors were summarized in Table 1.

Predictor Description

Jaccard Similarity
Coefficient

neighbor nodes [31,33,41].

A classic type of common neighbors-based link predictors and has been widely applied in link prediction studies
of multi-disciplines. The value ranges from 0 to 1 and depends on the ratio of the number of two nodes’ shared
common neighbors (intersection of neighbor nodes) to the number of sum (union of neighbor nodes) of two nodes’

Resource Allocation

Index neighbor nodes of a pair of nodes [34].

A modified type of common neighbors-based link predictors, it is defined as the reciprocal of the commonly shared

Degree Product Index

The degree product index is the outcome of the multiplication of two nodes’ number of neighbor nodes. It is based
on the hypothesis of preferential attachment model that, nodes with larger nodal degree numbers tend to form new
links so as to accumulate higher degree number according to the power-law distribution [35,36].

Katz index

Katz index is a type of path-based link predictors, and it considers all the possible path and distance from one node
to another [37]. Katz index is considered a kind of extended common neighbors-based predictor. Unlike the common
neighbors-based predictors, which only consider the node of 1-step away as neighbor, nodes of multiple steps away
from the seed nodes are also considered as neighbors in link prediction. Katz index therefore partially overcomes

the limitation of common neighbors-based predictors that they fail to analyze two nodes without (1-step) common
neighbors. While Katz index’s consideration of all the possible paths and connection patterns in the networks makes
the computational requirements become high.

Graph Distance Predictor
weights of path [40].

Graph distance predictor is also a kind of path-based link predictors. It measures a pair of nodes’ path-length and

Rooted PageRank
Predictor

Rooted PageRank method works via an intuitive mechanism based on hierarchical relations of network [39]. For all
nodes in a network, Rooted PageRank algorithm considers each single node of the network as the root node and
then scores and ranks all other nodes against the root node according to specific hierarchical function. After all
iterations are done, the top-ranked node pairs could be considered the potential links. The Rooted PageRank is in fact
a kind of modification form or extension of the original PageRank algorithm [42].

SimRank Predictor

SimRank uses the network topological structure to detect similarity [43]. It supposes that two objects are similar if
they have similarity topological structures or referred by similar objects. SimRank goes through all the node pairs of
the network and hence is usually computation-intensive.

Random Predictor

outcomes.

The Random predictor predicts links in random way, and it served as a control reference to other predictors’
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Metric and link prediction

In order to evaluate the predictive performances of different
predictors, the Leave-One-Out strategy [44], combined with rank
score was selected to be the metric. The combination of Leave-
One-Out strategy with “Mean value + Standard Deviation” of the
rank score worked via the following way. For each round, one of
the known drug-disease edge was removed from the drug-disease
network. And then link predictor was applied to the network, and
the score (or likelihood) of all the unobserved edges including the
removed one at the beginning was computed and subsequently
ranked from higher to lower score order. Locate the ranked position
of the deleted edge which serves as a positive reference for predictors’
performance evaluation. If the known and deleted edge had high
score and ranked at the top of the predicted drug-disease edge score
list, the applied predictor could be considered an effective one. Else,
the predictor was not. The number of ranked position of the deleted
edge divided by the total number of edge predicted is the value of
rank score. It could be easily figured out that the value of rank score
ranges from 0 to 1, and simply the smaller value the rank score is, the
better the predictor’s performance is. Repeat above actions until all
the known drug-disease edges have been deleted for once. Suppose
there are totally N of such edges. And then calculate the “Mean
value + Standard Deviation” of these N rank scores of each predictor.
In such ways, the performances of different link predictors could
be benchmarked quantitatively. Similarly, smaller values of “Mean
value + Standard Deviation” indicate the better and more stable
performance of a predictor.

Upon identification of the best link predictor through
benchmarking, the best one—the Rooted PageRank predictor, was
applied to the full network dataset so as to predict potential link
between anti-cancer drug and neurodegenerative disease. Similarly,
the predicted anti-cancer drug-neurodegenerative disease association
edges were ranked according to the scores returned by algorithm.
And then top-ranked predictive drug-disease pairs were considered
the potential anti-cancer drugs that have effect on neurodegenerative
disease. Literature databases were subsequently searched in order to
find support for our prediction.

Results
Heterogeneous bipartite drug-disease network

Through data screening, neurodegenerative diseases without
phenotypic data and disease that do not have U.S. FDA-approved

drugs were removed. As a result, 32 types of neurodegenerative

diseases and 33 pairs of such drug-disease therapeutic relations
including 29 drugs and 6 types of neurodegenerative diseases
were retained for further analyses. The diseases included were the
Alzheimer’s disease, Amyotrophic Lateral Sclerosis, Huntington’s
disease, Parkinsonian disorder/syndrome, Parkinson’s disease, and
Postherpetic neuralgia (Supplementary Table S1). These data
indicate the existence of multiple “me-too” drugs for only small
number of specific neurodegenerative diseases and a large number of
neurodegenerative diseases lack pharmacotherapies yet.

The disease-disease phenotypic similarity was analyzed, as
described in the method section. Table 2 listed the top-ranked 8 most
similar neurodegenerative disease pairs. Amongst, the Parkinson’s
disease and Parkinsonian disorder had the highest score of cosine
similarity coefficient (about 0.92) in terms of phenotypic similarity.
Generally, most of the disease pair-wise cosine similarity coefficients
were low (around 0.1), indicating that most of these diseases did
not share lots of similar or common phenotypes/symptoms. Several
cases of low similarity disease pairs were also found. Such as the
disease pair of Cockayne Syndrome and the Parkinsonian Disorders
(whose similarity coefficient was zero) and the disease pair of Lewy
Body Disease and Canavan Disease (whose similarity coefficient
was lower than 0.02). For molecular structure similarity of drug
pairs, the Tanimoto Similarity Coefficient was used to measure the
similarity, while most of the coefficient values were low. Specifically,
it was expected that high similarity between approved drugs treating
neurodegenerative diseases and anti-cancer drug could be found,
as it is more likely for such anti-cancer drugs to be associated to
neurodegenerative disease nodes in the network link predictions.

Through integration of drug-disease association data and
similarity data, a heterogeneous bipartite drug-disease network
was constructed and visualized (Figure 1). It was heterogeneous
because two kinds of nodes and three types of edges presented in
the network. There were 201 drug nodes in the network, which
consisted of 171 anti-cancer drugs and 30 FDA-approved drugs for
treating neurodegenerative diseases. Accordingly, another 32 nodes
represented different neurodegenerative diseases in the network.

Rooted PageRank performed the best

As described in the method section, different predictors rank
scores generated under the Leave-One-Out metric were visualized
via violin plot (Figure 2), and their mean values and standard
deviations were also calculated and shown in Table 3. The Common
neighbors-based predictors, i.e., Jaccard Similarity Coeflicient,
Resource Allocation Index, and Degree Product Index had greater

Table 2. Top-ranked 8 pairs of neurodegenerative diseases with high phenotypic similarity.

ID Disease A Disease B Cosine Similarity Coefficient
1 Parkinson’s Disease Parkinsonian Disorders 0.92
2 Spinocerebellar Degenerations Cerebellar Ataxia 0.88
3 Huntington Disease Neuroacanthocytosis 0.86
4 Spinocerebellar Degenerations Machado-Joseph Disease 0.84
5 Spinocerebellar Ataxias Machado-Joseph Disease 0.80
6 Machado-Joseph Disease Friedreich Ataxia 0.79
7 Spinocerebellar Degenerations Friedreich Ataxia 0.79
8 Spinocerebellar Ataxias Spinocerebellar Degenerations 0.79
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Figure 1. Visualization of the heterogeneous bipartite drug-disease network constructed. The constructed bipartite network contains two kinds
of nodes: drug and disease nodes. The anti-cancer drugs were colored in green, and the U.S. FDA-approved drugs for treating neurodegenerative
diseases were colored in blue. And the neurodegenerative disease nodes were colored red. Three kinds of edges were in the network, i.e., the drug-
disease therapeutic association edges (blue), disease-disease similarity edges (red), and drug-drug similarity edges (green).
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Figure 2. The violin plot of rank scores of predictors. Jaccard Similarity Coefficient, Degree Product Index and Resource Allocation Index had
unsatisfying performances, while the Rooted PageRank predictor performed the best.
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fluctuation in their rank scores, which indicated their desirable
and unstable predictive performances. And compared with Degree
Product Index, the Jaccard Similarity Coeflicient and Resource
Allocation Index’s fluctuations were more obvious. The Random
predictor generated random scores in the prediction, which served as
a random reference to other predictors’ results. The rest 3 predictors,
i.e., SimRank Predictor, Graph Distance Predictor, and Rooted
PageRank Predictor, had the relatively better performance that other
predictors. Amongst, the Rooted PageRank has the smallest average
rank score and standard deviation (Figure 2 and Table 3), and hence
it has been considered the best predictors.

Rooted PageRank algorithm scored the best mean and
standard deviation in terms of predictive performance. Graph
Distance Predictor has a very close performance, but its rank score
mean value was slightly larger than that of the Rooted PageRank
Predictor (Table 3), indicating that, the Graph distance predictor’s
overall performance failed to outperform Rooted PageRank’s. And
therefore, Rooted PageRank predictor was the better method for
current network dataset.

Drug-disease link prediction

Using the best predictor, Rooted PageRank, the probable links
between drug nodes and disease nodes were predicted. The top-
ranked hits were selected and listed in Table 4. Three anti-cancer
drugs were predicted to be effective for postherpetic neuralgia. They
were Vincristine, Vincristine sulfate, and Vinblastine. For these
predictive therapeutic results, relevant literature supports were found.
Other predictive results were, Venetoclax for Parkinson’s disease, and
Oblimersen sodium for Parkinson’s disease, Parkinsonian disorder,
and Alzheimer’s disease.

Postherpetic neuralgia is a kind of persistent nerve pain resulting
from shingles and herpes varicella-zoster virus. The patients of it are
with main symptoms of headaches, numbness, pain, burning, etc
[48]. According to our predictive results, 3 anti-cancer drugs were
predicted to have potential treatment effects on the postherpetic
neuralgia. They are Vincristine, Vincristine sulfate, and Vinblastine
(Table 4). Vinblastine is an anti-cancer drug of tubulin modulator.
It is used for generalized Hodgkin’s disease, lymphocytic lymphoma,

Table 3. Predictors’ performance indication by mean and standard deviation of rank scores.

Link predictor Mean value * standard deviation of rank scores
Jaccard Similarity Coefficient 0.69+0.45

Resource Allocation Index 0.68+0.47

Degree Product Index 0.27+0.26

Katz Index 0.14+0.17

Graph Distance Predictor 0.12+0.14m

Rooted PageRank Predictor 0.11+0.14

SimRank Predictor 0.16+0.21

Random Predictor 0.50+0.32

Table 4. The list of anti-cancer drugs predicted to be the potential pharmacotherapies for different neurodegenerative diseases via the Rooted

PageRank predictor.

Neurodegenerative
disease

Anti-cancer drug | Description

Reference of anti-neurodegeneration
study of relevant anti-cancer drug

Postherpetic neuralgia Vincristine

Preventing tublin aggregations and disrupting
metaphase in cell cycle. It is used to treat leukemia,
neuroblastoma, Hodgkin's disease, etc.

Dowd et al., 1999 [45]

Vincristine Sulfate

Sulfate salt of Vincristine. With better bioavailability
and pharmacokinetic features than Vincristine.

Mora et al., 2016 [46]

exist.

Vinblastine Vinca alkaloid of Vincristine. Has similar anti-cancer Opavsky et al., 1989 [47]
mechanisms to Vincristine. Used to treat brain cancer,
melanoma and Hodgkin’s lymphoma, etc.
Parkinson’s disease Venetoclax Venetoclax weakens the survival of cancer cells via

targeting and blocking Bcl-2 protein’s functions. It is
used to treat lymphoma and leukemia. Side effects

Oblimersen sodium

Itis a bcl-2 antisense oligodeoxynucleotide. It targets
Bcl-2 mRNA, inhibits the formation of Bcl protein and
hence weakens the survival of cancer cells. It is used
to treat breast cancer, lymphoma, etc.

Alzheimer’s disease

Oblimersen sodium

Same as above.

Parkinsonian disorder

Oblimersen sodium

Same as above.

A part of the predictive top-hits have the supporting evidence from literature and reports.
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breast cancer, neuroblastoma, etc. In fact, according to literature
review, there is already report about the usage of Vinblastine to treat
the postherpetic neuralgia [47]. This is a literature evidence which
indicates the good performance and predictive power of our method.
For the other two predicted anti-cancer drugs, the Vincristine sulfate
is the sulfate salt of Vincristine, and Vincristine sulfate is used to
treat neoplasms and lymphoma. Vincristine is used to treat acute
lymphocytic leukemia and etc. While due to poor oral bioavailability,
Vincristine was formulated to become Vincristine sulfate so as to
obtain better pharmacokinetic results [46]. Interestingly, Vincristine
was also reported to be used for trying to cure postherpetic neuralgia
patients [45]. This is another supporting evidence of the good
predictive power of our prediction framework.

Discussion

Neurodegenerative disorders pose a significant global challenge
because of the brain’s immense complexity, which makes in-depth
research difficult. We've also observed that some neurodegenerative
conditions are rare diseases, often receiving minimal research
attention. Examples include Lewy body disease and Huntington’s
disease. Currently, a substantial number of individuals suffer from
complex or rare diseases due to a lack of effective treatment.

The traditional drug discovery approach for neurodegenerative
diseases, particularly Alzheimer’s disease, has often fallen short.
‘This highlights the urgent need for alternative strategies. With an
increasing number of approved drugs showing effects on additional
molecular targets or therapeutic uses, it’s a smart move to explore
disease-oriented drug repositioning, especially when conventional
methods struggle with hard-to-study and hard-to-treat diseases.

Drug repositioning offers several benefits over developing new
drugs from scratch (i.e., the de novo drug discovery and development
approach), such as lower costs in terms of time and resources.
These advantages, along with the success rate of repositioning, can
be further boosted by computational analytics. For instance, large-
scale computational data screening and analysis can help select
high-potential drug candidates, thereby saving resources and costs
by reducing the number of chemicals needing experimental testing.
Furthermore, computational predictive analyses, like machine
learning, can forecast whether chemicals and biomolecules will
interact effectively. These computational approaches are becoming
increasingly vital and significant in drug repositioning efforts.

In the predictive results of this work, Venetoclax used for treating
chronic lymphocytic leukemia was predicted to have potential
treatment effect on the Parkinson’s disease. As an anti-cancer drug,
Venetoclax works via selective suppression on Bcl-2, an anti-apoptotic
protein. Bcl-2 in fact exists in wide range of cell types, including
the neural cells [49-51]. And the apoptosis is one of the possible
reasons causing neurodegenerative disease including the Parkinson’s
disease. Potential associations may exist between Venetoclax and the
Parkinson’s disease via Bcl-2 regulations and apoptotic processes.
Another anti-cancer drug for chronic lymphocytic leukemia and
multiple myeloma, i.e., the Oblimersen sodium, was also predicted
to associate with the Alzheimer’s diseases, the Parkinson’s disease
and the Parkinsonian disorder. Similar to Venetoclax, Oblimersen
sodium is also a Bcl-2 modulatory protein, and it works via the
anti-sense mechanisms and regulations of the cellular apoptotic
processes [52]. It is likely that, through such apoptosis regulatory
mechanisms, aforementioned 3 kinds of neurodegenerative diseases

could be modulated by Oblimersen sodium. Furthermore, molecular
modelling methods such as molecular docking analysis are good
in silico way to further analyze the molecular binding interaction
models of drug-target pairs, which could be likely to provide
support for our prediction. However, neither the Alzheimer’s disease
nor the Parkinson’s disease has the clear or confirmed drug target,
which gives difficulty to conduct the molecular docking analysis of
predicted drug-target association pairs.

While our network analysis successfully identified several anti-
cancer drugs with potential for treating neurodegenerative diseases,
further validation is crucial. We need to conduct 77 vitro and in vivo
experiments to confirm these predicted therapeutic effects.

Additionally, exploring other link prediction methods is a
valuable next step. Every method has its strengths and weaknesses,
and no single one is perfect. For instance, machine learning and
community-based link prediction methods offer a variety of
predictors with different underlying principles. Applying these
diverse predictors could lead to the discovery of even more promising
drug repurposing opportunities.

Conclusions

This research explored a novel strategy to identify anti-cancer
drugs with potential for treating neurodegenerative diseases,
particularly Alzheimer’s. We built a heterogeneous bipartite drug-
disease network by analyzing similarities between drug pairs
and disease pairs. We then applied and evaluated eight different
prediction methods on this network. Through rigorous testing
using a leave-one-out strategy and rank scores, Rooted PageRank
emerged as the most effective predictor. We used Rooted PageRank
to identify anti-cancer drugs likely to have therapeutic effects on
neurodegenerative diseases. Our computational and predictive
analyses uncovered several high-potential drug-disease associations,
including Vincristine-Postherpetic  neuralgia and Oblimersen
sodium-Alzheimer’s disease. We found further literature evidence
supporting these predictions.

Ultimately, this work demonstrates a successful computational
and systems biology approach for drug repurposing, identifying
existing anti-cancer drugs as promising candidates for treating
neurodegenerative conditions.
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