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Introduction

The Wnt pathway is an evolutionarily conserved cell signaling system that has long been 
implicated in the pathogenesis of cancer. Of note, Wnt pathway mutations drive 90% of human 
colorectal cancers, underscoring the critical role of Wnt signaling in the regulation of cancer biology 
cell processes. A key component of cancer progression is the ability to invade and metastasize, 
facilitating the development of secondary tumors in remote locations of the body [1,2]. Once cancer 
metastasizes, survival rates plummet [2,3]. While the general outline of the metastatic cascade has been 
defined, many molecular signals and mechanisms promoting cancer cell dissemination, homing, and 
implantation in distant organs remain poorly understood. Recent studies implicate Wnt ligands and 
Wnt signaling as important contributors to metastasis and poor outcomes [4,5]. 

Wnt ligands are small morphogens that stimulate the Wnt pathway, playing crucial roles in 
development, cell proliferation, differentiation, and carcinogenesis [6-9]. They are hydrophobic and 
modified by palmitoleic acid, traveling short distances to mediate their effects [10,11]. The first member 
of the Wnt signaling pathway was discovered in the early 1970s with the identification of the wingless 
(wg) gene, which plays a key role in Drosophila wing development [12,13]. Fifteen years later, a proto-
oncogenic homolog of wingless, Int1, was discovered [14,15], and the name Wnt (a combination 
of wg and Int1) was established. β-Catenin, the primary downstream effector of the canonical Wnt 
pathway, was first identified for its role in adherens junction formation [16,17]. Only later was it 
shown that β-catenin, together with the adenomatous polyposis coli (APC) tumor suppressor protein 
(frequently mutated in colorectal cancer), regulates Wnt signaling [18–24]. Since the identification of 
int-1 (Wnt1), 18 other Wnt ligands have been characterized with different capacities to activate the 
Wnt/β-catenin pathway and with differential tissue expression patterns [25]. Wnt ligands are known 
to be secreted by tumor cells themselves as well as by various types of tumor-adjacent cells, including 
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cancer-associated fibroblasts (CAFs), tumor-associated macrophages 
(TAMs), and other stromal cells in the tumor microenvironment 
(TME). These secreted Wnt ligands have the potential to promote 
metastasis via their activation of Wnt signaling in the tumor cells 
and in the microenvironment of metastatic sites [26–29]. 

The current review will provide an overview of the 19 human 
Wnt ligands and their distinct contributions in the metastatic 
process. A thorough understanding of the Wnt-driven metastatic 
mechanisms will facilitate future drug targeting of this deadly cancer 
process.

Wnt Signaling

There are two major subdivisions of Wnt signaling: canonical 
and non-canonical (Figure 1). Canonical Wnt or Wnt/b-catenin 
signaling regulates transcription through the pathway’s key effector, 
β-catenin. In the absence of Wnt ligands, a large-molecular-weight 
β-catenin destruction complex, comprising adenomatous polyposis 
coli (APC), Axin, casein kinase 1 alpha (CK1α), and glycogen 
synthase kinase 3 (GSK3), phosphorylates β-catenin [30,31]. This 
phosphorylation, mediated by CK1α and GSK3, allows β-catenin to 
be recognized by the E3 ligase, β‐TrCP, leading to its ubiquitylation 
and proteasomal degradation. As a result, cytoplasmic and nuclear 
β-catenin levels remain low, and Wnt transcription is suppressed 
by Groucho/TLE [31]. The canonical Wnt pathway is stimulated 
by the presence of Wnt ligands, which bind to Frizzled (FZD) and 
low-density lipoprotein receptor-related protein 5 or 6 (LRP5/6) 
receptors. This promotes the receptors’ oligomerization, in a process 
dependent on the cytoplasmic protein, Disheveled (Dvl). Inhibition 
of the β-catenin destruction complex occurs when Axin, CK1α, 
and GSK3 are brought to the membrane via interaction with the 
activated Wnt receptor complex [7]. Consequently, degradation of 
cytoplasmic β-catenin is inhibited, allowing β-catenin to accumulate, 
translocate into the nucleus, displace Groucho/TLE, bind TCF/LEF, 
and activate Wnt-specific gene transcription [7,30,31]. 

Non-canonical Wnt signaling is traditionally divided into, at 
minimum, two pathways: Wnt/PCP and Wnt/Ca2+. Stimulation 
of the Wnt/PCP pathway leads to activation of small GTPases, 
such as RAC1 and RhoA, leading to JUN N-terminal kinase 
(JNK) activation, which regulates cell polarity, motility, and target 
gene transcription [32]. Stimulation of the Wnt/Ca2+ pathway 
activates phospholipase C (PLC) and protein kinase C (PKC), 
increasing intracellular Ca2+ levels. This Ca2+ activates calcium/
calmodulin-dependent protein kinase II (CaMKII) and the nuclear 
factor of activated T cells (NFAT) pathway to mediate target gene 
transcription [7,32]. 

There is accumulating evidence that specific Wnt, Frizzled, and 
co-receptor complexes determine which Wnt signaling pathway is 
activated [33-36]. For example, Frizzled receptors in complex with 
LRP5/6 co-receptors are classically considered activators of the 
Wnt/β-catenin pathway, as LRP5/6 plays a critical role in inhibiting 
the β-catenin destruction complex [37]. LRP5/6 encodes two 
Wnt binding sites (β-propeller regions E1-E2 and E3-E4), each of 
which can independently bind Wnt ligands, and Wnt ligands and 
antagonists have been grouped into classes with preference for the 
two sites, which may dictate the extent of pathway activity [38,39]. 
In addition, individual Frizzled receptors can participate in multiple 
signaling pathways, depending on the co-receptor with which they 
are paired [40-42]. For example, pairing with the co-receptor, PTK7, 
can activate the calcium pathway, which involves downstream 
effectors PKC and NFAT [40]. Another co-receptor, RYK, acts to 
regulate the planar cell polarity (PCP) pathway to regulate neurite 
outgrowth [43]. The epidermal growth factor receptor (EGFR) has 
also been shown to be a cofactor for Wnt9a-Fzd9b signaling [44]. 
Finally, certain Wnt ligands (e.g., Wnt5a) can bind the single-pass 
Ror1/2 receptor to active PCP signaling [45]. Despite their stark 
differences, both canonical and non-canonical signaling pathways 
induce the expression of numerous genes that are highly associated 
with cancer development and progression.

 

Figure 1. The classical Wnt signaling pathways. (A) The canonical Wnt signaling pathway, when there is (left) no Wnt ligand present and (right) 
when there is Wnt ligand present. (B) The Wnt/Planar cell polarity (PCP) signaling pathway. (C) The Wnt/Ca2+ signaling pathway.
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Metastasis

A major hallmark of cancer is the development of invasion 
and metastasis, enabling the spread of tumor cells to distant sites 
[1,2]. This process occurs through multiple steps known as the 
metastatic cascade. Metastasis begins when a tumor cell undergoes 
the epithelial-mesenchymal transition (EMT) [3]. EMT allows for 
the tumor cell to take on a mesenchymal phenotype, supporting 
invasion, resisting stress, and dissemination [3]. This process is 
typically characterized by a downregulation of epithelial proteins, 
including E-cadherin and cytokeratin, and an upregulation of 
mesenchymal proteins, including N-cadherin, vimentin, and twist 
[46]. While not typically considered EMT markers, many cells will 
also increase their expression of matrix metalloproteinases (MMPs) 
to aid their trafficking through the extracellular matrix [47,48]. 
Consequently, these cancer cells acquire stem-like characteristics, 
develop phenotypic plasticity, and exhibit enhanced motility [3,46]. 
Once a tumor cell has undergone EMT, it can extravasate through 

the endothelium into the bloodstream or lymphatic vessel [3,49]. 
While in the vessels, the cells must then be able to overcome the next 
big hurdle of metastasis: anoikis, or programmed cell death. This 
step is a critical barrier to metastasis, as most cells succumb to cell 
death once they reach the bloodstream due to the lack of adherence 
and structural support [50]. If the tumor cells are able to survive the 
circulation, they then must undergo extravasation to leave the vessel 
[3,49]. It is not clear whether cells extravasate due to physical cues, 
such as entrapment in small capillaries, or due to finding a suitable 
premetastatic niche [3,51]. Regardless, once these cancer cells have 
extravasated out of a vessel, they must then colonize a new organ to 
form a secondary tumor, restoring some of their original epithelial 
traits through mesenchymal-epithelial transition (MET) [3,49]. 
The metastatic cascade concludes when the cells undergo MET and 
initiate angiogenesis to ensure adequate nutrient supply in their new 
environment (Figure 2) [52]. As every step in this cascade is essential 
for successful metastasis, it is crucial to understand the contribution 
of individual Wnt ligands throughout this process (Table 1). 

 

Figure 2. The metastatic cascade and the Wnt ligands involved. (1) Epithelial-to-mesenchymal transition (EMT). (2) Matrix metalloproteinase 
(MMP) production. (3) Cell motility. (4) Angiogenesis. (5) Anoikis resistance. (6) Mesenchymal-to-epithelial transition (MET). *Wnt11 has been 
implicated in vasculogenesis, a similar process to angiogenesis.

Table 1. The components of the metastatic cascade and the Wnt ligands that have been connected to each component.

Metastatic Cascade Component Wnt Ligands

Epithelial-to-mesenchymal transition Wnt1, Wnt2, Wnt2b, Wnt3, Wnt3a, Wnt4, Wnt5a, Wnt5b, Wnt6, Wnt7a, Wnt7b, Wnt8b, Wnt9a, Wnt10a, 
Wnt10b, Wnt11, Wnt16

Matrix Metalloproteinase Production Wnt3a, Wnt5b, Wnt7a, Wnt10b

Cell Motility Wnt1, Wnt2, Wnt2b, Wnt3, Wnt3a, Wnt4, Wnt5a, Wnt5b, Wnt6, Wnt7a, Wnt7b, Wnt8a, Wnt8b, Wnt9a, 
Wnt9b, Wnt10a, Wnt10b, Wnt11

Anoikis Resistance Wnt11

Mesenchymal-to-epithelial transition Wnt2b

Angiogenesis Wnt2, Wnt2b, Wnt4, Wnt5a, Wnt5b, Wnt9b, Wnt10a, Wnt11
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Canonical Wnt Ligands Involved in Metastasis

The canonical Wnt ligands, Wnt1, Wnt3, Wnt3a, Wnt8a, 
Wnt8b, and Wnt10b, have all been implicated in promoting the 
metastatic process. However, some are better studied than others 
and have been investigated in varying contexts. Future studies are 
needed to strengthen these associations, as well as to identify unique 
functions of individual ligands. For example, all of the canonical 
Wnt ligands have been implicated in the migration and/or invasion 
of cancer cells, but only Wnt8a has not been implicated in EMT, 
and only Wnt3a and Wnt10b have been associated with MMP 
production. Similarly, only Wnt1 has been implicated in the bone 
metastatic niche. Thus, while the canonical Wnt ligands share many 
metastatic roles, there remain striking differences that are only just 
beginning to be identified.

Wnt1

Wnt1, a pro-metastatic Wnt ligand, is unique among the Wnt 
ligands as a member of the WNT-inducible signaling pathway 
proteins (WISPs) [53], which are well-established contributors to 
metastasis. Herein, we will focus on recent advances in understanding 
Wnt1’s specific roles, distinct from the broader pro-metastatic 
functions of WISPs [53]. Overexpression of Wnt1 in tumor cells 
is linked to invasion and metastasis and/or EMT in a number 
of cancers, including hepatocellular carcinoma, kidney cancer, 
osteosarcoma, colorectal cancer, ovarian cancer, cervical cancer, and 
breast cancer [54–64]. Pro-tumor M2-like macrophages have also 
been shown to secrete Wnt1, and coculture of these macrophages 
with tumor cells exhibits enhanced migration and invasion [65]. 
However, most studies of Wnt1 have been conducted in vitro, with 
a lack of critical in vivo studies across cancers. Despite the lack of 
research in this area, studies have highlighted a potential mechanism 
for Wnt1 in breast cancer bone metastases. A recent study suggests 
that Wnt1 plays a crucial role for osteoblastic bone metastasis. When 
breast cancer cells overexpressing Wnt1, Wnt3a, and Wnt5a are 
intracardially injected into mice, only the mice receiving the Wnt1-
overexpressing cells develop osteoblastic bone metastases [66]. These 
mice are also the only ones that show activation of Special AT-Rich 
Sequence-Binding Protein 2 (SATB2), an osteoblast differentiation 
marker that promotes osteogenesis [66]. Future studies on the role 
of Wnt1 in metastasis will further elucidate its specific contributions 
to the bone metastatic niche across multiple cancers.

Wnt3 and Wnt3a

Wnt3, a pro-metastatic Wnt ligand, is overexpressed in 
tumor cells and implicated in the metastatic phenotype of many 
cancers, including non-small cell lung cancer, intrahepatic 
cholangiocarcinoma, and pancreatic adenocarcinoma [67–70]. Its 
overexpression is associated with enhanced migration and invasion 
in colorectal cancer [71], gastric cancer [72], breast cancer [73,74], 
oral cancer [75], and non-small cell lung cancer [70]. Wnt3 is also 
implicated in promoting EMT in colorectal cancer [71], breast 
cancer [73], and oral cancer [75]. In vitro studies using human 
lung and pancreatic adenocarcinoma cells show that mesenchymal-
transitioned tumor cells secrete Wnt3, inducing invasion and 
metastasis in other nearby epithelial cancer cells [69]. Finally, clinical 
studies confirm the association between Wnt3 and metastasis; 
Wnt3 is strongly expressed in colorectal adenocarcinoma with liver 
metastasis and in breast cancer with lymph node, liver, and brain 

metastases [71,73]. While these studies provide strong evidence for 
the role of tumor-produced Wnt3 in metastasis, the contribution of 
stromal or immune-derived Wnt3 in the tumor microenvironment 
remains unknown. 

Wnt3a is the quintessential canonical Wnt ligand and there is 
a substantial amount of research linking Wnt3a and metastasis. It 
is produced not only by tumor cells, but by pancreatic stellate cells 
[76], CAFs [77,78], and TAMs [65,79]. In vitro studies show that 
Wnt3a expression enhances cellular migration, invasion, and EMT 
in osteosarcoma, breast cancer, chondrosarcoma, cervical cancer, and 
hepatocellular carcinoma [80-85]. Moreover, Wnt3a overexpression 
is associated with increased migration, invasion, and EMT in 
colorectal cancer cells, and increased production of MMP-2, MMP-
9, and MMP-7 in hepatocellular carcinoma [86-89]. Despite these 
in vitro and correlative patient studies, that role of Wnt3a induced 
production of MMPs has not been thoroughly investigated using 
in vivo models [88,89]. Strong in vivo evidence linking Wnt3a and 
metastasis comes from studies in lung and gastric cancer. In non-
small cell lung cancer, in vitro studies show that increased Wnt3a 
expression promotes EMT and cellular invasion, while in vivo 
xenograft murine models show that Wnt3a expression enhances 
distal metastasis [90–92]. Additionally, overexpression of Wnt3a 
increases lung and abdominal metastasis in murine gastric cancer 
models [93,94]. In patient cohorts, elevated Wnt3a expression 
correlates with lymph node metastasis in patients with laryngeal 
squamous cell carcinoma [95]. 

Wnt8a/b

Wnt8a and Wnt8b are understudied Wnt ligands in the context 
of metastasis [96]. One study in pancreatic cancer indicates that 
inhibiting Wnt8a decreases cancer cell migration and invasion [97]. 
Limited evidence indicates that Wnt8b promotes EMT, migration, 
and invasion in gastric cancer and non-small cell lung cancer [98,99]. 
Additional studies are required to confirm their pro-metastatic roles.

Wnt10b

Wnt10b is produced both by tumor cells and CAFs [100–
102]. While studies of this ligand are limited, Wnt10b has been 
investigated across a wide variety of cancers and linked to a pro-
metastatic phenotype in hepatocellular carcinoma, thyroid cancer, 
glioblastoma, gastric cancer, and breast cancer, among others [103–
108]. In prostate cancer, Wnt10b expression is elevated in metastatic 
tumors compared to primary tumors, and cultured prostate cancer 
cells overexpressing Wnt10b exhibit increased motility and invasion 
[109,110]. Conversely, Wnt10b knockdown reduces MMP-9 and 
EMT gene expression [109]. Additional studies are needed to clarify 
the mechanisms underlying Wnt10b’s role in metastasis.

Non-Canonical Wnt Ligands Involved in Metastasis

The non-canonical Wnt ligands—Wnt4, Wnt5a, and Wnt11—
are implicated in metastasis, but their roles vary: while all are linked 
to EMT, cell motility, and angiogenesis, Wnt11 may also exhibit 
anti-metastatic effects [111]. Despite Wnt5a being the quintessential 
non-canonical Wnt ligand, recent findings identify unique roles 
for the other non-canonical ligands and highlight Wnt4’s role in 
hypoxia-induced endosomes, and Wnt11’s contribution to anoikis 
resistance [112–114].
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Wnt4

Wnt4 is a pro-metastatic Wnt ligand that is produced by both 
tumor cells and CAFs. In ovarian high-grade serous carcinoma 
metastases, Wnt4 expression in CAFs is over 10-fold higher than in 
other cell types within the metastatic tumor microenvironment [27]. 
Expression analysis of FZD8, LRP5, and LRP6 in the TME suggests 
that the tumor cells themselves are the primary target of Wnt4, 
although functional assays are needed to confirm this interaction 
[27].

Wnt4 expression is linked to enhanced migration and invasion in 
laryngeal carcinoma [115] and hepatocellular carcinoma [116], and 
with EMT in hepatocellular carcinoma [116] and colorectal cancers 
[117]. Limited in vivo studies associate Wnt4 expression with lymph 
node metastasis in laryngeal carcinoma [115]; however, the strongest 
in vivo evidence connects Wnt4 to hypoxia-driven metastasis. 
Hypoxia in primary tumors is a significant driver of metastasis, and 
expression of Wnt4 has been identified as one mechanism driving 
this process. In colorectal cancer, hypoxia triggers the release of Wnt4 
enriched endosomes [113,114], which are absent in non-hypoxic 
tumor cells [113]. These Wnt4 enriched endosomes promote the 
proliferation, migration, and invasion of non-hypoxic tumor cells 
in vitro and promote metastasis and increase angiogenesis in vivo 
[113,114]. Future studies are needed to determine if these findings 
extend to hypoxia-driven metastasis in other cancers. 

Wnt5a

Wnt5a is the most extensively studied Wnt ligand for its role in 
metastasis, with several reviews detailing its significance [118–121]. 
Herein, we will focus on major findings from the last five years 
on the role of Wnt5a in the metastatic cascade. Wnt5a is widely 
recognized as pro-metastatic, with its production reported in tumor 
cells [122], myeloid-derived suppressor cells [123], CAFs [124-128], 
and TAMs [129,130]. In fact, despite the fact that both tumor and 
CAF-secreted Wnt5a contribute to a pro-metastatic phenotype, a 
recent study implicates TAMs as the primary source of Wnt5a in the 
microenvironment, rather than the tumor itself, in colorectal cancer 
[130–133]. The role of TAM-secreted Wnt5a is unexplored in other 
cancer types, making it a promising avenue for future studies.

Additionally, recent in vitro studies show Wnt5a expression 
enhances EMT, cellular migration, and invasion in pancreatic 
ductal adenocarcinoma, osteosarcoma, and liver cancer [134–139]. 
Elevated Wnt5a expression in patient samples is associated with 
increased lymph node metastasis in oral squamous cell carcinoma, 
bladder cancer, and thyroid cancer [140–143]. Murine models also 
demonstrate the role of Wnt5a in promoting lung cancer metastasis 
to the brain, and kidney cancer metastasis to the lung and liver 
[144–147]. Interestingly, Wnt5a can also modulate angiogenesis 
in kidney cancer and in gliomas [146,148]. In prostate cancer, 
where bone metastasis poses a significant clinical challenge, bone 
metastases exhibit the highest Wnt5a expression compared to other 
metastatic sites. These bone metastases also show the lowest degree 
of Wnt5a methylation, even when compared to other metastases in 
the same patient. This hypomethylation allows for increased Wnt5a 
expression, promoting metastasis and tumor outgrowth [149]. As 
Wnt5a may drive specific organ-tropic metastasis across various 
cancers, investigating its methylation patterns in these contexts 
could be a promising avenue for future research.

Finally, while Wnt5a has already been implicated across the 
metastatic cascade, it has recently been recognized for its role at 
the leading edge of tumors. In breast cancer, Wnt5a mediates 
invasion by inducing CXCL8 and promoting the formation of 
actin protrusions [150,151]. Elevated Wnt5a secretion from breast 
cancer cells at the leading edge promotes increased Wnt/PCP 
signaling, which is essential for proper actin cytoskeleton dynamics 
supporting these protrusions [151]. Similarly, in melanoma, Wnt5a 
increases invasion by interacting with myristoylated alanine-rich 
c-kinase substrate (MARCKS) to drive an invasive phenotype [152–
154]. Activated MARCKS, essential for melanoma cell invasion, 
is directly activated by Wnt5a, which induces accumulation of 
phosphorylated-MARCKS along the leading edge [154]. A Wnt5a 
gradient may further guide the direction of the invasive edge. In 
ovarian cancer, expression of receptor tyrosine kinase-like orphan 
receptor 2 (ROR2) promotes directed cell migration towards areas 
with a high concentration of Wnt5a [155]. These findings highlight 
Wnt5a as a leading pro-metastatic Wnt ligand and serve as a model 
for studying other non-canonical Wnts.

Wnt11

Wnt11 has been extensively studied in the context of metastasis, 
but its role as pro- or anti-metastatic remains unclear. Produced 
exclusively by tumor cells, Wnt11 exhibits pro-metastatic functions 
in cervical cancer, pancreatic ductal adenocarcinoma, prostate 
cancer, colorectal cancer, breast cancer, and melanoma [156–158]. 
In prostate cancer, elevated Wnt11 expression enhances migration, 
invasion, and EMT markers, while Wnt11 inhibition reverses these 
effects [159–163]. Clinically, metastatic prostate cancers show higher 
Wnt11 expression than normal prostate or non-metastatic tumors 
[162,163]. Similarly, in colorectal cancer, high Wnt11 expression is 
observed in liver metastasis, and its upregulation promotes migration 
and invasion in vitro and increases lung metastasis in vivo following 
intravascular injection [164–166]. Inhibition of Wnt11 diminishes 
these enhanced capabilities [165]. 

In breast cancer and melanoma, Wnt11 has been extensively 
studied for its role in metastasis through diverse mechanisms. 
In breast cancer cells, Wnt11 enhances protrusive activity and 
motility through Wnt11-FZD6 interactions at the leading edge of 
cell protrusions [167]. Similarly, in melanoma, Wnt11 regulates 
invasion and distant metastasis through amoeboid melanoma cells at 
the tumor’s invasive front [168]. Wnt11 also interacts with ROR2, 
where increased ROR2 expression correlates with a more invasive 
phenotype and worse metastasis-free survival in breast cancer [169]. 
Further, Wnt11 promotes GTPase RhoA activation, conferring 
anoikis resistance to breast cancer cells [112]. Finally, in melanoma, 
silencing Wnt11 disrupts vasculogenesis [170], a non-traditional 
form of blood vessel formation that supports tumor progression and 
metastatic lesion growth, similar to angiogenesis [170]. Given the 
diverse mechanisms observed across cancer types, future research 
should explore whether specific metastatic strategies are conserved 
across other Wnt11-expressing cancers.

Although Wnt11 is typically considered pro-metastatic, a study 
in ovarian cancer discovered that high Wnt11 expression inhibits 
cellular migration, invasion, and intraperitoneal metastasis in a 
murine model [111]. This finding highlights the need for further 
investigation into the distinct mechanisms of Wnt11 in ovarian 
cancer, and whether similar mechanisms occur in other understudied 
cancers. 
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Mixed Canonical/Non-Canonical Wnt Ligands Involved 
in Metastasis

The majority of Wnt ligands, including Wnt2, Wnt2b, Wnt5b, 
Wnt6, Wnt7a, Wnt7b, Wnt9a, Wnt9b, Wnt10a, and Wnt16, can 
be classified as both canonical and non-canonical ligands. Due to the 
large number of ligands in this group, their roles in metastasis vary 
significantly, with numerous conflicting findings, as discussed below.

Wnt2 and Wnt2b

Wnt2, typically classified as a canonical Wnt ligand, has recently 
been implicated in non-canonical signaling [171–176]. Irrespective 
of its canonical or non-canonical activities, Wnt2 is considered 
pro-metastatic. Wnt2 is produced by tumor cells [177,178], 
pancreatic stellate cells [174,175], and CAFs across many cancer 
types [26,179,180]. Wnt2 is linked to invasion and metastasis in 
lung cancer, endometrial cancer, cervical cancer, pancreatic cancer, 
esophageal squamous cell carcinoma, and colorectal cancer [171–
173,176]. In colorectal cancer, Wnt2 may promote angiogenesis; 
co-culture of endothelial cells with Wnt2-expressing colonic 
CAFs, compared to Wnt2-knockout CAFs, increases vessel area, 
branch points, sprouts, and sprout length. Additionally, colorectal 
tumors overexpressing Wnt2 exhibit enhanced vasculature when 
subcutaneously injected into mice, compared to control tumors 
[179]. Wnt2 is also implicated in gastric cancer metastasis [181–
185]. A study by Cao and colleagues shows that intravenous injection 
of Wnt2-overexpressing gastric cancer cells in mice increases lung 
metastasis in vivo [185]. Further studies are needed to elucidate the 
mechanism of Wnt2 in lung metastasis.

Wnt2b, also known as Wnt13, is implicated in the metastatic 
potential of a large number of cancers across multiple steps of the 
metastatic cascade. Produced by tumor cells, its expression in stromal 
and immune cells remains unexplored. Wnt2b overexpression has 
been linked to EMT in multiple cancers, including prostate cancer 
[186], hypopharyngeal squamous cell carcinoma [187], ovarian 
cancer [188,189], and cervical cancer [190]. Studies in ovarian and 
cervical cancer also associate Wnt2 with migration, invasion, EMT, 
and angiogenesis in vitro [188–190]. Schwab et al. demonstrates 
Wnt2b’s role in MET in colorectal cancer using the LIM1863-
Mph model system, which exhibits epithelial-mesenchymal state 
plasticity. Wnt2b is the most abundant differentially expressed Wnt 
gene between epithelial and mesenchymal states, and recombinant 
Wnt2b overcomes porcupine-inhibitor-blocked MET [191]. In 
patient studies, Wnt2b has been shown to play a role in perineural 
spread and lymph node metastasis. Pancreatic cancer is one of the 
few cancers in which metastatic spread can occur along nerves, 
and Wnt2b expression is significantly correlated with perineural 
metastasis, although the mechanism is poorly understood [192]. 
Additionally, Wnt2b expression also correlates with lymph node 
metastasis in gallbladder carcinoma [193], osteosarcoma [194], and 
nasopharyngeal carcinoma [195]. 

Wnt5b

Wnt5b is implicated in the metastatic phenotype of several 
cancers, including lung cancer, osteosarcoma, and colorectal cancer 
[196–200]. Wnt5b production is attributed exclusively to tumor 
cells [69,201], but Wnt5b can modulate signaling in stromal cells. 
For example, secreted Wnt5b transforms CAFs into lipid-rich CAFs, 
which produce vascular endothelial growth factor A (VEGFA) to 

initiate angiogenesis in colon cancer progression and metastasis 
[142]. 

Recent advancements in understanding Wnt5b have focused on 
hepatocellular and breast carcinoma. In hepatocellular carcinoma, 
patient tissue and in vitro protein analysis reveal that high Wnt5b 
expression correlates with metastasis, with tissues showing elevated 
EMT marker expression [202,203]. A similar pattern is observed 
in breast cancer, where Wnt5b overexpression is linked to a 
mesenchymal phenotype and stemness. Knocking down Wnt5b in 
breast cancer cells disrupts these traits [204,205]. In triple-negative 
breast cancer, high Wnt5b expression strongly correlates with 
metastasis in patients, and knocking down Wnt5b in immortalized 
human breast cancer cell lines reduces cellular migration capacity 
[204]. 

Finally, recent findings implicate Wnt5b in multiple stages of 
the metastatic cascade. For example, in head and neck squamous 
cell carcinoma, upregulated Wnt5b enhances migration, invasion, 
and MMP-10 expression [48]. Similarly, in oral squamous cell 
carcinoma, elevated Wnt5b promotes migration, lymphatic 
metastasis, and lymphangiogenesis [206,207]. Notably, Wnt5b 
knockdown in oral squamous cell carcinoma reduces metastatic 
spread without impacting primary tumor growth [207], suggesting 
that, in this tumor model, the role of Wnt5a may be primarily 
confined to promotion of metastasis.

Wnt6 and Wnt16

Wnt6 is produced by tumor cells [208–211] and hepatic stellate 
cells [212,213] and is well-established in initiating and promoting 
EMT [214,215]. Wnt6 has primarily been studied in breast cancer 
and has been proposed to enhance the migratory and metastatic 
potential of breast cancer cells [208,216]. One study found that 
Wnt6 expression correlates with breast cancer metastasis to the 
bone, although the underlying mechanism remains unclear [209]. 
Emerging evidence highlights Wnt6 as a potential prognostic 
biomarker. In osteosarcoma, high Wnt6 expression correlates with 
higher-grade tumors, increased distant metastasis, and reduced 
overall survival [210]. Similarly, in colorectal cancer patients with 
liver metastasis post-hepatic resection, elevated Wnt6 expression is 
associated with lower overall survival [211]. These findings support 
Wnt6’s potential as a clinical prognostic biomarker.

In contrast, Wnt16 has been minimally studied in the context of 
metastasis. It is associated with EMT in retinoblastoma, but its role 
in metastasis across other cancer types remains unexplored [217]. 

Wnt7a

Wnt7a is recognized as pro-metastatic across multiple cancer 
types. For example, in pancreatic cancer and oral squamous cell 
carcinoma, elevated Wnt7a expression positively correlates with 
lymph node metastasis, promotes EMT, and enhances cellular 
migration and invasion [218–220]. Moreover, Wnt7a contributes 
to extracellular matrix degradation, with increased Wnt7a levels in 
bladder cancer clinically associated with higher MMP-10 expression 
[221]. Additionally, Wnt7a has been proposed to support a pro-
metastatic role by activating CAFs, in the tumor microenvironment, 
as observed in breast cancer and ovarian cancer [29,222]. 

While most studies support Wnt7a’s pro-metastatic role, 
its function remains controversial. In gastric cancer, Wnt7a 
overexpression suppresses invasion and metastasis both in vitro and 
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in vivo [223]. Further, although Wnt7a induces MMP-10 expression 
in bladder cancer, it represses MMP-9 production in head and neck 
squamous cell carcinoma [221,224], highlighting cancer-type-
specific effects. These contradictory findings complicate the study 
of Wnt7a in complex models. For example, in endometrial cancer, 
two studies from two different research groups at the same medical 
center, using similar clinical immunohistochemistry but different 
antibodies, report opposing correlation between Wnt7a and lymph 
node metastasis [225,226]. Similarly, contradictory findings exist 
in colorectal cancer regarding the impact of Wnt7a on lymph node 
metastasis [227–229]. These discrepancies suggest that Wnt7a’s role 
may be context-dependent or isoform-dependent. Supporting this 
idea, a murine breast cancer model identified two Wnt7a isoforms: a 
349 amino acid isoform that promotes tumor growth and metastasis 
and a 148 amino acid isoform that inhibits both [230]. The role of 
Wnt7a isoforms in human cancer models remains unexplored but 
warrants further investigation to clarify Wnt7a’s complex role in 
metastasis.

Wnt7b

Wnt7b exhibits both pro- and anti-metastatic properties, and 
is produced by both tumor cells and TAMs. It is pro-metastatic 
in breast cancer, gastric cancer, pancreatic ductal adenocarcinoma, 
hepatocellular carcinoma, and oral squamous cell carcinoma [231–
235]. Recent studies in colorectal cancer show conflicting roles, 
with Wnt7b both promoting and inhibiting metastasis [236,237]. 
Preliminary research in prostate cancer cells expressing Wnt7b shows 
increased motility and invasion [110], while its knockdown in lung 
adenocarcinoma reduces migration and invasion, suggesting a pro-
metastatic role in both cancers [238]. However, these findings are 
limited to in vitro studies and await in vivo validation. 

Despite studies linking Wnt7b to cancer cell migration, a 
recent study in bladder urothelial carcinoma reveals anti-metastatic 
properties. Wnt7b is commonly downregulated in urothelial 
carcinoma, but its forced overexpression inhibits EMT and stemness, 
suggesting an anti-metastatic role [239]. Conversely, in upper tract 
urothelial carcinoma, Wnt7b expression correlates positively with 
metastasis [240]. Given that both cancers originate from the same 
urothelial cell type, these conflicting findings challenge the idea that 
Wnt7b’s effects are solely cancer-type specific. Future studies should 
explore the mechanism and regulation of Wnt7b in urothelial 
cancer and other cancers where Wnt7b may exhibit anti-metastatic 
properties.

Wnt9a/b

Wnt9a, also known as Wnt14, is a dual canonical and non-
canonical Wnt ligand [241] produced by tumor cells. Its role in 
metastasis is conflicting, with evidence suggesting both anti- and 
pro-metastatic effects. In breast and colorectal cancer, Wnt9a 
induction suppresses cellular proliferation, and is downregulated 
in human bladder carcinoma samples [241–243]. In prostate 
cancer, Wnt9a enhances metastatic potential by promoting cellular 
plasticity and EMT marker expression [244]. In vitro, prostate 
cancer cells overexpressing Wnt9a exhibit enhanced motility and 
invasion, an effect mitigated by prohibitin, a tumor suppressor that 
negatively regulates Wnt9a [110]. Further, across patient samples, 
Wnt9a expression is statistically higher in metastatic prostate cancer 
compared to non-metastatic prostate cancer or benign prostate 
[110]. The conflicting roles of Wnt9a in metastasis warrant further 
investigation. 

Wnt9b, also known as Wnt14b and Wnt15, is understudied 
in the context of metastasis. Its mechanism has only been reported 
in cervical cancer and glioblastoma [245,246]. In cervical cancer, 
Wnt9b expression promotes cellular proliferation, migration, and 
invasion, whereas in glioblastoma Wnt9b expression is associated 
with angiogenesis [245,246]. In breast cancer, Wnt9b serves as 
a sensitive and specific diagnostic marker in surgical pathology 
[247–249], but its role in breast cancer metastasis remains largely 
unexplored. 

Wnt10a

Wnt10a exhibits pro-metastatic roles, and when produced 
by tumor cells, promotes migration and invasion in renal cell 
carcinoma, papillary thyroid cancer [250–253], breast cancer 
[254,255], and esophageal squamous cell carcinoma [256]. Notably, 
in 3D-organotypic cultures of invasive esophageal squamous cell 
carcinoma, Wnt10a expression is upregulated over four-fold at the 
invasive front, compared to the rest of the culture [256]. Additionally, 
Wnt10a overexpression induces EMT and angiogenesis in diffuse 
large B-cell lymphoma [257] and correlates with lymph node 
metastasis in breast cancer patients [255]. Future studies are needed 
to build upon these findings.

Targeting the Wnt Pathway in Metastasis

Given that Wnt ligands play a crucial role in the metastatic 
cascade across cancers, targeting the Wnt pathway serves as an 
appealing strategy for reducing cancer progression (Table 2). 
However, not all Wnt ligands are strictly pro-metastatic, and 
conflicting data for mixed canonical and non-canonical ligands 
highlight the need for further studies to clarify their potential for 
therapeutic targets. Overall, canonical Wnt ligands are the most 
well-studied and consistently pro-metastatic, and thus, represent 
promising targets for reducing cancer spread. 

One approach to target Wnt signaling in the setting of metastasis 
is to block the secretion of Wnt ligands or the activation of specific 
Wnt receptors. This approach could be accomplished with broadly 
acting porcupine inhibitors. Porcupine is an acetyltransferase that 
promotes the palmitoylation of Wnt ligands at the cell membrane, 
allowing for the secretion of Wnt ligands [258]. Without activity of 
the porcupine protein, Wnt ligand secretion and local Wnt signaling 
is disrupted [259]. While small molecule porcupine inhibitors have 
been developed, they target the Wnt pathway broadly, including 
ligands that affect both non-canonical and canonical pathways. 
Because of this lack of specificity, they exhibit toxicities, most 
notably that of decreased bone mass [260]. 

In addition to porcupine inhibitors, Frizzled receptor inhibitors 
have recently been developed. Both small molecule drugs and 
monoclonal antibodies have been developed that can inhibit specific 
Frizzled receptors [261–263]. Each Wnt ligand has a different affinity 
for the various Frizzled receptors [264]. Therefore, it is possible to 
reduce the activity of a specific Wnt ligand by inhibiting its major 
Frizzled receptor. For example, Wnt2 is associated with increased 
aggression in thyroid cancer [4] and strongly stimulates Frizzled 8 
receptors [265]. Hence, a potential treatment for thyroid cancer 
progression could be the use of an anti-Frizzled 8 antibody. The 
varied expression and specificities of Frizzled receptors may explain 
the organ-specific dependency on certain Wnt ligands. Moreover, 
combining these Frizzled receptor inhibitors with a low dose 
porcupine inhibitor may reduce toxicity and improve outcomes.
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Table 2. Wnt ligands and the cancers for which they are either pro- or anti-metastatic.

Wnt Ligand Canonical or 
Non-Canonical

Pro-Metastatic Anti-Metastatic References

Wnt1 Canonical Hepatocellular carcinoma, osteosarcoma, Wilm’s tumor, 
colorectal cancer, ovarian cancer, cervical cancer, breast 
cancer

None [28–40]

Wnt2 Both Lung adenocarcinoma, endometrial cancer, cervical 
cancer, pancreatic cancer, colorectal cancer, gastric cancer, 
esophageal squamous cell carcinoma

None [13,151–159]

Wnt2b Both Prostate cancer, hypopharyngeal squamous cell 
carcinoma, ovarian cancer, cervical cancer, colorectal 
cancer, pancreatic cancer, osteosarcoma, gallbladder 
cancer

None [160–169]

Wnt3 Canonical Intrahepatic cholangiocarcinoma, pancreatic cancer, 
colorectal cancer, gastric cancer, breast cancer, non- small 
cell lung cancer, oral squamous cell carcinoma

None [41–49]

Wnt3a Canonical Osteosarcoma, breast cancer, chondrosarcoma, cervical 
cancer, hepatocellular carcinoma, colorectal cancer, non- 
small cell lung cancer, gastric cancer, laryngeal squamous 
cell carcinoma

None [39,50–69]

Wnt4 Non-canonical Ovarian cancer, laryngeal carcinoma, hepatocellular 
carcinoma, colorectal cancer

None [14, 87–91]

Wnt5a Non-canonical Pancreatic ductal adenocarcinoma, osteosarcoma, 
hepatocellular carcinoma, hepatoblastoma, oral squamous 
cell carcinoma, bladder cancer, thyroid cancer, lung 
adenocarcinoma, non- small cell lung cancer, renal 
cell carcinoma, glioma, prostate cancer, breast cancer, 
melanoma, ovarian cancer

None [96–129]

Wnt5b Both Lung adenocarcinoma, non-small cell lung cancer, 
osteosarcoma, colorectal cancer, hepatocellular 
carcinoma, breast cancer, head and neck squamous cell 
carcinoma, oral squamous cell carcinoma

None [22,43,142,170–
181]

Wnt6 Both Breast cancer, osteosarcoma, colorectal cancer None [182–190]

Wnt7a Both Pancreatic ductal adenocarcinoma, oral squamous cell 
carcinoma, bladder cancer, breast cancer, ovarian cancer, 
colorectal cancer, endometrial cancer

Gastric cancer, head and neck 
squamous cell carcinoma, 
endometrial cancer, colorectal 
cancer, breast cancer

[16,192–204]

Wnt7b Both Breast cancer, gastric cancer, pancreatic ductal 
adenocarcinoma, hepatocellular carcinoma, oral squamous 
cell carcinoma, colorectal cancer, prostate cancer, lung 
adenocarcinoma, upper tract urothelial carcinoma

Colorectal cancer, bladder, 
cancer, urothelial carcinoma

[84,205–214]

Wnt8a Canonical Pancreatic cancer None [71]

Wnt8b Canonical Gastric cancer, non-small cell lung cancer None [72,73]

Wnt9a Both Prostate cancer Breast cancer, colorectal cancer, 
bladder cancer

[84, 215–218]

Wnt9b Both Cervical cancer, glioblastoma None [219–223]

Wnt10a Both Renal cell carcinoma, thyroid cancer, breast cancer, 
esophageal squamous cell carcinoma, diffuse large B-cell 
lymphoma

None [224–231]

Wnt10b Canonical Hepatocellular carcinoma, thyroid cancer, glioblastoma, 
gastric cancer, breast cancer, prostate cancer

None [74–84]

Wnt11 Non-canonical Cervical cancer, pancreatic ductal adenocarcinoma, 
prostate cancer, colorectal cancer, breast cancer, 
melanoma

Ovarian cancer [85,86,130–144]

Wnt16 Both Retinoblastoma None [191]
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Additionally, with the use of Frizzled receptor inhibitors it may 
be possible to target both 1) receptors important for the tumor’s 
growth and proliferation at the primary tumor site and 2) receptors 
expressed in metastatic niches that may promote cancer cell 
colonization. For example, late stage colon cancers frequently express 
Wnt5a and Wnt5b, and their cognate receptor Frizzled 2 [266]. As 
the expression of these ligands and receptors also occurs in the lungs 
[267], a common metastatic site for colon cancer, treatment with an 
anti-Frizzled 2 antibody could inhibit both primary tumor growth 
and metastatic outgrowth in the lungs. Future studies should work 
to further dissect the roles of Wnt ligands and metastasis, as well as 
the efficacy of various Wnt inhibitors, as this treatment strategy has 
the potential to help many patients across cancer types worldwide.

Finally, it is also important to consider the impact that targeting 
Wnt may have on the tumor microenvironment due to the large 
involvement of Wnt in the TME as well as the tumor itself [268–
270]. Wnt signaling can lead to epigenetic alterations in the TME 
which could make tumors more or less resistant to treatment, though 
the consequences of these alterations need further investigation 
[271,272]. Moreover, Wnt can significantly modulate the immune 
system [269]. For example, it has been shown that various Wnt 
ligands can polarize TAMs into either an anti-tumorigenic ‘M1-like’ 
state, or a pro-tumorigenic ‘M2-like’ state [273]. Wnt signaling is 
also important for the differentiation and activation of cytotoxic T 
cells [269]. Additionally, some Wnt signaling components when 
overexpressed by tumor cells can be recognized as tumor-associated 
antigens, thereby triggering tumor cell killing by immune cells 
[274]. These findings could suggest that targeting Wnt signaling 
may be a poor approach to take as it could negatively suppress the 
body’s natural immune response to tumors. However, other research 
has shown that Wnt signaling promotes immune exclusion, as well 
as dampens dendritic cell-priming of anti-tumor T cells [269,274]. 
This would suggest that targeting Wnt signaling would bolster the 
immune response, making treatment even more effective, especially 
in combination with other treatments such as immunotherapy. 
Thus, future studies should also work to dissect the role of Wnt in 
the TME in distinct tumor settings to best inform the use of Wnt 
inhibition as a treatment strategy to have the largest positive impact 
on patients globally. 

Conclusion

Metastasis, a devastating hallmark of cancer, significantly reduces 
patient survival, underscoring the need to better understand its 
drivers to improve outcomes. Wnt ligands and Wnt signaling play 
crucial roles in numerous biological processes, including metastasis. 
Currently, research identifies Wnt1, Wnt2, Wnt2b, Wnt3, Wnt3a, 
Wnt4, Wnt5a, Wnt5b, Wnt6, Wnt8a, Wnt9b, Wnt10a, Wnt10b, 
and Wnt16 as pro-metastatic Wnt ligands, while Wnt7a, Wnt7b, 
Wnt8b, Wnt9a, and Wnt11 exhibits conflicting pro- and anti-
metastatic roles. Recent studies show that these ligands can originate 
from tumor cells or microenvironmental cells, such as fibroblasts and 
macrophages. However, the role of Wnt ligands in metastasis remains 
incompletely understood. Future studies are needed to deepen 
our understanding of the relevant mechanisms in both primary 
and metastatic tumors. Such insights will pave the way for novel 
therapeutic strategies to alleviate the burden of metastatic disease. 
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