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Evidence for a Latitude Gradient for Autoimmune Disease and Allergy

Prevalence of common autoimmune diseases such as multiple sclerosis (MS), type 1 diabetes, 
rheumatoid arthritis, and inflammatory bowel disease and allergies such as food allergies or eczema 
affect approximately 20% of the human population. However, prevalence of autoimmunity and 
allergy is not uniform latitudinally from the equator to the poles of the globe. Epidemiological 
studies demonstrate the prevalence of autoimmunity and allergy increases with increasing latitude, 
with higher prevalence towards the north in the northern hemisphere or the south in the southern 
hemisphere [1]. The prevalence of MS (an autoimmune disease of the central nervous system) 
is up to ten times the risk in people who grew up in northern Canada (latitude 41°–83° North) 
compared to equatorial zones [2]. This latitude gradient is not due to genetic disparity and has been 
demonstrated to be associated with factors occurring during childhood. In Australia, where there is 
a large range of latitude (10°–43° South) the prevalence of MS is higher for people who grew up in 
the south of the country compared to the north [3–5]. In New Zealand (latitude 29°–52° South), 
the association of latitude of childhood domicile and development of MS is observed until the age 
of twelve [6] showing the link is due to factors in childhood. The incidence of type 1 diabetes up 
to the age of 15 demonstrates variation between high and low latitudes [1,7]. The prevalence of 
rheumatoid arthritis and inflammatory bowel disease has been demonstrated to be higher in higher 
latitudes compared to southern latitudes in the US, with the effect also associated with location 
of residence during childhood [8,9]. There was no significant effect of latitude for systemic lupus 
erythematosus, a disease that can be aggravated by sunlight [10].

The prevalence of allergy demonstrates a similar latitudinal gradient to autoimmunity. The 
risk of acquiring eczema as an 8–9 year-old is at least twice that for those who live in the south of 
Australia compared to the north [11]. Moreover, the risk of having a peanut allergy is 6 times greater 
for 8–9 year-olds who reside in the south of Australia compared to the north [11]. Additionally, 
prescription of EpiPens and admission to emergency for anaphylaxis for infants 0–4 years old and 
children, was shown to be significantly higher in both the south of Australia and the south of Chile 
(latitude 17°–56° South) compared to the north [12,13]. 
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The increased risk of autoimmune disease and allergy with 
growing up at higher latitudes has been linked to decreased sunlight 
exposure [3–5,14–17] whereby daylight length and ultraviolet light 
(UV) are significantly reduced at high latitudes in winter. Progression 
to a greater level of disability in MS is associated with lower UV 
exposure as children and teenagers, as seen in a multi-nation 
study [18]. In Norway and Italy, the risk of MS is associated with 
decreased sunlight exposure during childhood and early adolescence 
[19,20]. Low levels of Vitamin D were previously thought to be 
involved in predisposition to MS [21–23] and allergy [12] however 
studies have demonstrated that the development of disease is most 
likely independent of vitamin D [24,13]. Some studies have also 
demonstrated that the development of MS is even independent 
of UV [25]. A study in Western Australia demonstrated that male 
fetus in utero in the third trimester and the baby boys in their first 
year of life who resided in areas with the highest quartile of ambient 
erythemal UV radiation had approximately a 40% reduced risk of 
type 1 diabetes [26]. The study did not measure time spent outdoors 
and it may not be that high UV alone is responsible, indeed high 
UV levels correlate with brighter intensity of visible light spectrum 
and increased infrared radiation. Light intensity, photoperiod 
(the number of daylight hours of the visible light spectrum), and 
near infrared radiation vary with latitude and can also influence 
the immune system [27,28] and most likely play a role in disease 
predisposition. 

Association of Regulatory T-cells with Disease and 
Sunlight Exposure

The immune system normally protects us from disease however 
in the cases of autoimmunity and allergy, the mechanisms which 
keep the immune system in check against over-reaction have been 
weakened or disrupted, resulting in inflammation and disease. 
Regulatory controls which normally suppress unwanted reactions of 
the immune system against self or antigens, include the production 
and activation of regulatory T-cells which prevent inappropriate 
actions of effector T-cells. Regulatory T-cells are present from as 
early as in utero and expand during the childhood developmental 
years [29,30]. These cells are highly relevant to disease such that 
reduced T-regulatory cell levels and function have been observed 
in MS [31–38] and allergy [39–41]. T-regulatory cells help prevent 
unwanted immune reactions by both soluble mediators and surface 
binding co-stimulatory molecules [42]. It has been observed that B 
regulatory cells are also implicated in controlling autoimmunity [43] 
and allergy [44]. 

A link between decreased sunlight exposure and reduced 
regulatory T-cell activity could provide an explanation for the latitude 
gradient of predisposition to autoimmunity and allergy. Indeed, we 
demonstrated that the circadian circulation of T-regulatory cells (the 
egress from lymph nodes out into the periphery) is reduced in winter 
in pubescent girls and their mothers who lived at a moderately 
high latitude in the southernmost part of Australia where the 
daylight length is six hours less in winter than in summer (winter 
photoperiod 9 hours light: 15 hours dark) [45]. In the UK, it has 
also been demonstrated that the levels of T-regulatory cells are lowest 
mid-winter and highest in summer (winter photoperiod 8:16 hours) 
in adult males and are associated with cortisol levels [46]. Circadian 
migration of T-cells from lymph nodes is mainly dependent on 
cortisol [47–51], a circadian and a circannual hormone, which is 
influenced by daylight length. Sunlight can affect T-regulatory cell 

levels in utero as demonstrated in a study whereby T-regulatory cell 
levels in mothers and the umbilical cord of newly born infants were 
positively associated with vitamin D levels, a marker of sunlight 
exposure [52] but not a driver of T-cell circulation. Vitamin D is 
not a circannual hormone and the results from a study investigating 
season and T-regulatory cells, suggest that is not involved in seasonal 
circadian variation in T-regulatory cell circulation [53]. Vitamin D 
levels are more of a surrogate or general indication of sun and UV 
exposure. 

It is conceivable that during winter at high latitudes, fewer 
naïve (untrained) T-regulatory cells are produced and released into 
circulation in developing children, and thus fewer cells transition 
to memory T-regulatory cells. That is, there are fewer T-regulatory 
cells in circulation which have been trained to assist in controlling 
unwanted immune reactions against self-antigen and foreign 
antigen. The circulation of T- cells is associated with cortisol levels 
[47], therefore changing levels of cortisol with season will result 
in changing levels of T-regulatory cells. Lower levels of trained 
regulatory cells could potentially lead to reduced ability to suppress 
attack against self-tissue by effector T-cells when the body is under 
stress. Combined with specific genetic predisposition, this could 
potentially pre-dispose an individual to autoimmune disease. In 
the case of allergy, the hygiene theory or extent of prior exposure 
to allergens combined with fewer available T-regulatory cells could 
potentially lead to an over-reaction to allergens. 

In our study we also made the observation that T-helper 17 
cell (Th17) levels in adults are associated with the amount of time 
spent outside in the recent summer (but did not vary between 
summer and winter) [45], suggesting that the levels of these cells 
could be influenced directly and transiently by the amount of direct 
sunlight. Th17 levels are much higher in adults, so children may 
not necessarily demonstrate this association. Previous studies have 
shown that successful treatment with UV light in patients with 
psoriasis is associated with lowered Th17 levels [54], suggesting that 
Th17 levels are more likely influenced by UV and not photoperiod. 
It appears that different mechanisms are acting on T-regulatory cells 
and Th-17 cells, but it is the photoperiod during childhood that is 
influencing how T-regulatory cells develop.

Evidence of the Effect of Photoperiod on Immunity 

Studies of the effect of photoperiod on the immune system in 
animal models have elucidated the finding that photoperiod alone 
can have significant effects on immune cell levels and function. The 
advantage of animal models, for example, rodents or swine, is that 
UV light can be eliminated and only the length of the visible light 
spectrum can be manipulated to determine the effect of short day 
or long day, as in summer and winter. Experiments in nocturnal 
species such as Siberian hamsters have demonstrated differences in 
immune reactivity in different photoperiods [55–59]. Swine has a 
similar circadian rhythm and immune system to humans and being 
diurnal are more appropriate to study than say rodents [60]. Short 
day photoperiod, the winter equivalent, was demonstrated to be 
associated with higher total leukocytes, Natural Killer cells, γδ T 
cells, naïve Th cells, and monocytes levels in blood in swine, and 
leukocyte levels were associated with cortisol levels, the circadian 
hormone [27]. Photoperiod has also been shown to influence the 
immune status of pregnant sows and their piglets, that is total white 
blood cell number, neutrophil to T-cell ratio and proliferation 
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responses to concanavalin and Lipo-polysaccharide, with cortisol 
levels influenced by short or long length photoperiod [61]. These 
studies provide support for the notion that predisposition to allergy 
and autoimmunity can start as early as in utero and is influenced by 
photoperiod via circadian hormones such as cortisol. The mechanism 
by which the photoperiod and cortisol can influence immune cell 
frequency and function, in simplistic terms, is via the hypothalamic-
pituitary-adrenal (HPA) axis whereby the detection of light through 
the eyes transmits neural signals to pineal gland which regulates the 
release of cortisol. As discussed, cortisol regulates the circulation of 
T-cells and influences the function of immune cells.

The effect of photoperiod on B-cell numbers and function is 
less well understood. In a mouse model the number of circulating 
B-cells was found to be increased, along with T-cell numbers in a 
short day photoperiod compared to a long day photoperiod [62]. 
In contrast the memory B-cell mediated antibody response was 
reduced in Siberian hamsters in a short day photoperiod [63]. 
In relation to the effect of photoperiod on cytokine action, the 
response to lipopolysaccharide injected into hamsters was studied 
and in the short day photoperiod decreased levels of interleukin 
(IL)-6 and IL-1beta were observed with reduced length of infection 
symptoms due to the reduced levels of these pro-inflammatory 
cytokines [64]. In a similar study of squirrels, short day photoperiod 
was associated with reduced levels of the inflammatory cytokines 
C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), 
and IL-6, and increased levels of IL-2, and this was associated with 
daylength dependent melatonin levels [65]. Caution must be used 
when interpreting results of photoperiod effects in rodent models 
to human responses as rodents are nocturnal. However, melatonin 
has been demonstrated to be synthesized by lymphocytes, and 
to regulate IL-2 and the IL-2 receptor [66]. In addition, IL-2 
influences differentiation of immature T-cells to T-regulatory cells 
[67] and this may occur via phosphotyrosine linked signaling [68] 
thereby demonstrating a mechanism for the effect of photoperiod 
on the immune system and immune regulation. That is, long day 
photoperiod may both influence the number of T-regulatory cells 
being produced and selected in the thymus, as well as the number of 
T-regulatory cells in circulation and being trained against antigen.

Seasonal changes in the immune system have also been observed 
at the gene expression level, with the expression of 4,000 genes 
in white blood cell varying according to season [69]. Epigenetic 
changes leading to gene expression can potentially be influenced by 
light and season. 

Sunlight Can Act on the Immune System via Different 
Mechanisms

It is likely that the human body has evolved to develop 
redundancies to utilize the various wavelengths of sunlight to its 
immunological advantage, and to align with the seasons for energy 
conservation and breeding. It would make sense that the body has 
different pathways to optimize sunlight with multiple mechanisms 
to harness the different wavelengths emitted by the sun to maximize 
immune health particularly during harsher seasons such as winter. 
Photoperiod, that is the length of exposure of visible light in a diurnal 
pattern, and the circadian control of levels of regulatory immune 
cells by cortisol has been discussed. Transient intense sun exposure 
may also be utilized to boost or help regulate the immune system in 
addition to the effects due to photoperiod. That is, a brief but high 

intensity sun exposure can assist in immune regulation via a different 
pathway to photoperiod. For example, a burst of high UV radiation 
via the skin may provide short term anti-inflammatory effects. It 
is well established that UV has multiple health benefits and has 
immune effects via dendritic cells and antigen presenting cells and 
has previously been comprehensively reviewed [70] and is not the 
scope of this paper. It is also feasible that during periods of high UV 
radiation there is also higher luminosity (lux) of visible light which 
may influence the immune system. Green-blue light spectrum are 
the main wavelengths that control circadian rhythm via transmission 
through the eyes and the HPA axis, and therefore a transient increase 
in that wavelength could influence the effects of photoperiod on 
the immune system [71]. Bright light can change cortisol levels 
and mood [72], therefore it is conceivable that a burst of strong 
bright visible light can influence the immune system. In addition, 
it is established that blue light via an artificial source can affect the 
immune system via the skin and improve allergic conditions via the 
release of nitric oxide [73]. Near infra-red radiation also has positive 
effects via the production of melatonin and anti-oxidative properties 
which could contribute to lower inflammation [28]. The reduction 
in risk of autoimmunity and allergy associated with greater sunlight 
exposure may be due to a combination of factors: long daylight 
photoperiods (with T-regulatory cells circulating in sufficiently high 
levels for most of the year), exposure to UV light, high intensity blue 
light and near infra-red, all of which can modify the immune system 
and provide health benefits. 

How Much Sunlight Do We Need? Evidence from 
Epidemiology Studies 

Autoimmune diseases and allergies give rise to economic cost as 
well as personal suffering. Understanding the relationship between 
early life sun exposure and disease risk is a means to developing 
preventative strategies against disease. Early sunlight exposure is a 
balance between avoiding skin cancer and allowing the immune 
system to develop normal regulatory mechanisms. Developed 
countries such as Australia have guidelines for safe sun exposure to 
avoid sunburn whilst still obtaining normal vitamin D levels, but 
we do not have recommendations for minimal amounts of sunlight 
exposure to prevent allergy and autoimmunity. Epidemiological 
studies, although not controlled trials, provide an insight into 
sunlight dosage to avoid disease. One study demonstrated that 
infants who were diagnosed with eczema had had an average of 7 
minutes of outdoor exposure between the hours of 11 am and 3 pm 
in the first 3 months of life compared to children without eczema 
who had had an average of 20 minutes exposure (it’s noted that 
the standard deviation of times was high) [17]. Thus, as little as 13 
minutes exposure at a time of higher sunlight intensity may help 
reduce the risk of allergy but exposure at this time of day carries risk. 

Studies of childhood sun exposure and MS risk also provide some 
insight into how much sunlight is necessary to reduce disease risk. In 
a cohort of children with MS it was observed that those who spent 
at least one hour outside on the weekend in summer had an 80% 
lower risk of MS [74]. Another study demonstrated that sun seeker 
behavior versus sun avoidance and spending time outside in early 
life was associated with 75% reduction in risk of disease as an adult 
[20], but the study did not provide specific exposure times. In a large 
retrospective study of nurses, it was observed that spending more 
than nine hours outside per week in summer (an average of just over 
an hour per day, or >4 hours outside on weekends) in conjunction 
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with optimal UV levels was associated with an approximately 50% 
reduction in risk [75]. In an Australian control study of people with 
MS, it was found that adults who recalled having spent at least one 
hour outside daily in winter (compared to <1 hour) between the 
ages of six and 10 years were likely to have a 50% reduced risk of 
MS [76]. 

From these studies, a general approximation for the dosage of 
time required to spend outdoors during childhood to reduce disease 
risk by at least 50%, would be to go outside for at least one hour 
daily in summer, and one hour in winter. Protection can potentially 
increase up to 80% with increased time spent outside with more 
sun exposure, but the exact amount of time that affords maximum 
protection is not known. Spending more time outside as a child 
will reduce the risk of disease. Obviously, the UV index needs 
to be considered when spending time outside to avoid sunburn 
and skin cancer. In countries where there is a high UV index it is 
recommended to go outside when UV index is below 3, usually 
early morning or late in the day. For the best time of day see the 
Sun smart global UV app, or alternatively people can go outside and 
sit in the shade or use sun protection strategies such as sunscreen, 
clothing and a broad brimmed hat. Decreasing the risk of allergy and 
autoimmunity is possible without increasing the risk of skin cancer, 
as just ‘seeing’ light without being in direct sunlight, for example 
sitting in the shade, is sufficient to influence the immune system.
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