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Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects millions of individuals
worldwide, leading to memory loss, cognitive decline, and functional impairments. Early and accurate
detection of AD is critical for effective management and treatment planning. This paper presents an efficient
approach for Alzheimer’s disease classification using a deep learning model based on the EfficientNetV2S
architecture, leveraging transfer learning to enhance performance. EfficientNetV2S, an evolution of the
EfficientNet model, is designed to balance speed and accuracy by combining fused-MBConv and MBConv
layers, making it highly suitable for tasks requiring both high performance and computational efficiency.
In this study, we fine-tune a model initialized with ImageNet-pretrained weights on a domain-specific
Alzheimer’s dataset. Furthermore, we rigorously validate the model’s performance using k-fold cross-
validation, confirming its reliability and generalizability across diverse data subsets. The proposed model
achieved an accuracy of 98.1%, a precision of 98.9%, recall of 98.3%, and F1-score of 98.6%. These results
demonstrate significant improvements in performance, outperforming other state-of-the-art models.
Transfer learning allows the model to adapt pretrained features to the Alzheimer’s domain, speeding up
training and improving generalization. Our findings highlight the potential of EfficientNetV2S for high-
performance applications in medical image classification, where both computational efficiency and
accuracy are crucial.

Keywords: Alzheimer’s disease, Machine learning, Deep learning, Image preprocessing, Magnetic
resonance imaging (MRI)

Introduction

Alzheimer’s disease (AD), a progressive neurodegenerative disorder, presents a growing challenge
to healthcare systems worldwide due to its complex nature and devastating impact on patients
and their families. Early detection of Alzheimer’s is crucial as it enables timely intervention and
management, potentially slowing disease progression and improving quality of life. One of the
most effective tools for AD detection is Magnetic Resonance Imaging (MRI), which allows non-
invasive visualization of brain structure and abnormalities.

However, interpreting MRI scans for Alzheimer’s detection is highly complex and requires
expertise in distinguishing subtle changes in brain morphology across different stages of the
disease. In recent years, computer-aided diagnostic (CAD) techniques, powered by artificial
intelligence (AI) and machine learning (ML), have gained significant attention for their ability
to automate and enhance this process. These methods have shown promise in analyzing MRI
images to detect Alzheimer’s-related changes, but challenges remain due to issues such as small
datasets, imbalanced class distributions, and the difficulty of capturing complex brain features.

The field of Alzheimer’s detection has seen a variety of approaches utilizing both machine
learning (ML) and deep learning (DL) techniques. In traditional ML methods, features are
manually extracted from MRI images, and algorithms such as support vector machines (SVMs),
random forests, and logistic regression are applied for classification. While these methods have
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demonstrated some success, they often depend heavily on feature
engineering and expert knowledge, which can be limiting. Deep
learning (DL) techniques, particularly convolutional neural
networks (CNNs), have revolutionized the field by automating
feature extraction and achieving state-of-the-art performance in
image classification tasks. These DL models, however, require large
amounts of labeled data and substantial computational resources
for training. To address this, transfer learning has emerged as a
powerful technique, where a model pretrained on a large dataset
(such as ImageNet) is fine-tuned on the target dataset. This
approach significantly reduces the need for large labeled datasets
and computational resources, making it particularly useful in
medical imaging applications where labeled data may be scarce.

In this study, we propose a novel approach for Alzheimer’s
disease classification using MRI scans, by combining transfer
learning with the Efficient- NetV2S model. EfficientNetV2S is an
advanced convolutional neural network known for its efficiency
and scalability, achieving high performance while maintaining
relatively low computational costs. The model is fine-tuned
on a preprocessed and balanced dataset comprising MRI scans
categorized into four classes: Non-Demented, Very Mild Demented,
Mild Demented, and Moderate Demented. The framework of our
method involves several key stages: dataset preprocessing, model
selection and fine-tuning, and performance evaluation.

First, the MRI dataset undergoesa series of preprocessing steps,
including normalization of pixel intensity values to a standard
range, spatial resizing of MRI images to ensure consistency,
and bilateral filtering for noise reduction while preserving edge
details. To enhance model performance and increase the diversity
of training data, data augmentation techniques such as random
rotations, flips, and scaling are applied during training. These
augmentations help the model generalize better to unseen data by
simulating variations commonly observed in real-world scenarios.
The EfficientNetV2S model, pre-trained on the ImageNet dataset,
is selected for the Alzheimer’s classification task and fine-tuned on
the augmented MRI dataset to learn specific features necessary
for distinguishing between different Alzheimer’s stages. The model
is trained using a classification loss function, such as categorical
cross-entropy, and its performance is evaluated using metrics such
as accuracy, precision, recall, and F1 score. After training, the
model’s results are compared with other state-of-the-art methods
for Alzheimer’s detection, including six other pre-trained models.

The contributions of this study are as follows:
High-performance Alzheimer’s classification

We demonstrate the effectiveness of EfficientNetV2S in
classifying Alzheimer’s disease from MRI scans, emphasizing its
scalability, accuracy, and efficiency in medical image analysis.

Comprehensive model comparison

Through extensive experiments, we compare the performance
of seven pretrained models—EfficientNetB0O, MobileNet, ResNet,
InceptionResNet, VGG16, InceptionV3, and EfficientNetV2S—to
identify the most suitable architecture for Alzheimer’s disease
detection.

Impact of learning rate adjustments

We analyze the influence of learning rate modifications on

model performance, underscoring its critical role in optimizing
training processes and achieving superior results.

Our findings demonstrate that the proposed approach
significantly out-performs other models in terms of accuracy and
F1 score, especially in distinguishing between the four classes
of Alzheimer’s disease severity: Non-Demented, Very Mild
Demented, Mild Demented, and Moderate Demented. This
study underscores the importance of integrating advanced deep
learning models with careful experimental analysis, contributing
to the growing potential of Al in the automated diagnosis of
Alzheimer’s disease.

The structure of this paper is organized as follows: Section 2
reviews related works, focusing on machine learning, deep learning,
and transfer learning methods for Alzheimers disease (AD)
detection.  Section 3 describes the dataset and preprocessing
steps and outlines the proposed framework, highlighting the use
of EfficientNetV2S. Section 4 presents the experimental results,
showcasing the performance comparison of seven pretrained
models, including EfficientNetV2S, and analyzing the impact
of learning rates on model performance. Section 6 concludes the
paper by summarizing the contributions and providing directions
for future research.

Related Works
Alzheimer’s disease (AD) detection using MRI images has

become a crucial area of research, given the increasing importance
of early diagnosisin managing the disease. Over the years, various
machine learning (ML) and deep learning (DL) techniques
have been employed to identify and classify brain abnormalities
indicative of Alzheimer’s. This section reviews key advancements
in these approaches, starting with traditional machine learning
methods, followed by deep learning techniques, and finally, the
utilization of transfer learning with pretrained models.

Machine learning techniques for Alzheimer detection

Classical machine learning techniques have been widely used for
Alzheimer’sDisease (AD) detection from MRI images. Methods
such as Support Vector Machines (SVM), Decision Trees (DT),
and Random Forest (RF) have been applied to classify AD and
Normal Control (NC) images. For example, Vaithinathan K
employed Random Forest, KNN, and linear SVM, achieving
89.58% sensitivity and 85.82% specificity using the ADNI
dataset [1]. Similarly, Kavitha ez a/. applied decision trees,
random forests, SVM, and XGBoost, achieving an accuracy
of 83% for early AD detection [2]. These traditional machine
learning methods often rely on manually engineered features
and are effective when the dataset is well-structured and
the features are properly selected, such as through correlation or
information gain techniques. Additionally, advanced models like
XGBoost, when combined with feature extraction techniques
such as Discrete Wavelet Transform (DWT), have demonstrated
even higher performance, with one study achieving an
accuracy of 97.88% [3].

Recent work, such as that by Rao er a/., highlights the
application of 3D MRI technology in AD detection, where 2D
slices of white and grey matter are taken from coronal, sagittal,
and axial orientations, followed by feature extraction using

Multi-Layer Perceptron (MLP) and SVM classifiers [4]. This
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approach, evaluated through Precision, Recall, Accuracy, and
F1-Score, emphasizes the critical role of machine learning in
providing high- accuracy, early-stage AD diagnosis, which has
the potential to alleviate the extensive healthcare burdens of this
condition. Despite the promising outcomes, traditional machine
learning methods have limitations. They heavily depend on the
expertise of the researcher to select relevant features and are often
unable to capture the complex relationships within the data,
which is particularly important in medical imaging tasks like
Alzheimer’s detection.

Deep learning techniques for Alzheimer detection

On the other hand, neural networks, especially Convolutional
Neural Networks (CNN), have gained significant attention for
their ability to automatically learn complex features from MRI
images. Several studies have leveraged CNNs for AD detection,
including Weimingling e# al., who achieved an accuracy of 81.4%
and an AUC of 87.8% by using an Extreme Learning Machine
(ELM) for classification after extracting features from patch
images [5]. Other studies, like those by Abolbaher er al. [6]
and Amir Ebrahimi et al. [7], used deep neural networks (DNN)
and combinations of 2D/3D CNNs with Recurrent Neural
Networks (RNN) to classify AD with accuracies above 90%.
A further CNN-based framework achieved 99.6% accuracy for
binary AD classification and 97.5% for multi-class classification
on the ADNI dataset, highlighting deep learning’s potential to
improve AD diagnosis significantly [8].

Further advancements include a VGG-16-based approach,
where the images were preprocessed by converting 3D to 2D,
resizing, and then passed through VGG-16 for feature extraction,
followed by classification using various methods like SVM, Linear
Discriminant Analysis, and K-means clustering. This method
achieved a remarkable 99.95% accuracy on fMRI datasets and
73.46% on PET datasets, demonstrating the advantages of using
CNNs alongside traditional classifiers [9]. Recently, El-Assy ez
al. introduced a dual-CNN architecture, achieving over 99%
accuracy across multiple AD categories by combining distinct
CNN models to capture both local and global MRI features
[10]. These approaches have shown strong classification accuracy
and robustness compared to classical methods, enhancing the
effectiveness of early AD detection. However, deep learning
techniques require large amounts of annotated data and
substantial computational resources for training, which can be a
limiting factor in clinical settings where annotated MRI datasets
are often limited.

Transfer learning for Alzheimer detection

To overcome the limitations of large annotated datasets and
high computational demands, transfer learning using pretrained
models has emerged as a powerful solution. Transfer learning
allows models to leverage knowledge learned from large-scale
datasets in one domain and apply it to a different, often
smaller, dataset. This approach has been particularly beneficial
for Alzheimer’s detection using MRI images, where pretrained
models on general image datasets such as ImageNet have been
fine-tuned for specific medical imaging tasks. The use of deep
learning in medical imaging has gained momentum, with MRI
playing a crucial role in Alzheimer’s disease (AD) diagnosis—a
progressive neurodegenerative disorder affecting memory and

cognitive function. MRI-based studies classify early AD stages,
including cognitively normal (CN), mild cognitive impairment
(MCI), and AD, using CNN-based transfer learning models.
In one study, 2,182 MRI images from the ADNI database
were processed using various CNN architectures, achieving top
results with EfficientNet models, particularly EfficientNetBO,
which reached a 92.98% accuracy rate [11]. EfficientNetB3
further excelled in precision, sensitivity, and specificity. Another
study using EfficientNet-b0, combined with both end-to-end
and transfer learning, achieved up to 95.29% accuracy for
classifying stable mild cognitive impairment (sMCI) versus AD
and 87.38% accuracy for multiclass AD stages classification [12].
Different studies have employed additional pre-trained networks like
AlexNet, ResNet-18, and GoogleNet on ADNI datasets, with
classification accuracies between 94% and 97.5% [13]. The
AlexNet model demonstrated particularly high  sensitivity
(100%) and specificity (98.21%), making it promising for
computer-aided diagnostics (CAD) in AD detection. Beyond
MRI, combining data from multiple imaging sources, such
as fused CT-MRI and EEG signals, has been explored with
the HEMRDTL model, using VGG-19 and robust principal
component analysis (RPCA) to enhance accuracy [14]. This
hybrid model showed notable effectiveness, underscoring the
benefit of integrating structural and functional brain data
for AD detection. Some studies have also investigated the use
of lightweight neural networks like MobileNet for mobile and
resource-constrained environments, which yielded favorable results
with over 96% accuracy in multi-class AD classification
[15,10]. 'This model’s minimal computational demand offers
practical benefits for mobile diagnostics, potentially expanding
accessibility in clinical settings. ~ Other studies highlighted
Xception and other CNN architectures for multi-class MRI
classification, with the Xception model achieving an accuracy of
99.6%, demonstrating the promise of deep learning and transfer
learning for scalable, non-invasive AD screening [16]. Additionally,
a transfer learning-based approach using MRI scans from the
ADNI database was proposed to classify AD stages, including
normal control (NC), early mild cognitive impairment (EMCI),
late mild cognitive impairment (LMCI), and AD. This method
involves extracting gray matter and fine-tuning a pre-trained
VGG model with a stepwise freezing strategy, demonstrating
superior classification performance [17]. A similar deep learning
framework utilizing convolutional neural networks (CNN) for
AD classification was developed, incorporating pre-processing,
data augmentation, cross-validation, and feature extraction
[18]. Two methods were explored: a simple CNN model and
a fine-tuned VGG16 model with transfer learning on various
datasets. The framework achieved significant performance gains
with minimal labeled data and prior domain knowledge, with the
CNN model achieving 99.95% accuracy and the fine-tuned VGG16
model achieving 97.44% accuracy, showing promising results
with low computational complexity and minimal overfitting.

Moreover, a study used MRI data from Kaggle, including
very mild dementia, mild dementia, and
moderate dementia categories. Three pre-trained networks—
VGG-19, ResNet-50, and InceptionV3—were assessed, achieving
classification accuracies of 92.86%, 85.99%, and 91.04%,
respectively, demonstrating the efficacy of transfer learning for
AD classification [19]. While existing methods have made notable

non-dementia,
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strides in Alzheimer’s disease classification, challenges such as class
imbalance, limited data availability, and the need for computational
efficiency persist. Traditional ML approaches often depend heavily
on manual feature engineering, while CNN-based methods, despite
their high performance, require extensive labeled datasets and
computational resources. Transfer learning has addressed some of
these issues, yet most studies lack robust mechanisms to optimize
model scalability. Our approach leverages an advanced deep
learning architecture, integrating EfficientNetV2S for Alzheimer’s
severity classification, providing a more efficient and scalable
solution compared to prior works.

Proposed Methodology

This section presents a transfer learning approach using
EfficientNetV2S for Alzheimer’s stage classification. As illustrated
in Figure 1, training images are first augmented and normalized
to balance the dataset. The preprocessed images are then used
to fine-tune the pretrained EfficientNetV2S model, followed by
additional CNN layers for task-specific adaptation. Finally, the
trained model is evaluated on test images to assess classification
performance across Alzheimer’s stages. This approach effectively
leverages pretrained features and data augmentation to enhance
model accuracy and robustness.

Dataset description and augmentation

The dataset’ used in this study is an augmented version of
the original Kaggle Alzheimer’s dataset™, which includes images
from four diagnostic cat-egories: "No Impairment,” ”Very Mild
Impairment,” "Mild Impairment,” and “Moderate Impairment.”
The original dataset exhibited a significant class imbalance, with
class distributions of 3,200 samples for “No Impairment,” 2,240
for “Very Mild Impairment,” 896 for “Mild Impairment,” and
only 64 for “Moderate Impairment.” This disparity often led
to classifiers being biased toward the majority class, which is
particularly problematic in early Alzheimer’s detection where
false negatives can be critical. To address this issue, a data
augmentation approach employing Wasser-stein Generative

Adversarial Networks with Gradient Penalty (WGANs-GP) was

Alzheimer Dataset

implemented. WGANs-GP effectively mitigates mode collapse,
a common problem in traditional DC-GANSs, by generating
synthetic MRI images for the minority classes, thereby enhancing
diversity and rectifying the class imbalance. After augmentation,
each class was brought to a balanced distribution, with all classes
now containing 2,560 samples. This resulting dataset, which
comprises a mix of real and synthetic images, significantly
improved model performance, particularly in recognizing
minority classes.

1 hetps://www.kaggle.com/datasets/lukechugh/best-alzheimer-mri-
dataset-99-accuracy

2 https://www.kaggle.com/datasets/marcopinamonti/alzheimer-
mri-4-classes-dataset

Dataset pre—processing

The pre-processing pipeline in this study
standardize and enhance the quality of MRI images to optimize
model performance for Alzheimer’s detection. Each image was
processed in grayscale format to reduce computational complexity,
with the following sequential steps applied to each image in
the dataset:

aimed to

Noise reduction: Non-Local Means (NLM) filtering was
employed for noise reduction in MRI images. NLM is a powerful
denoising technique that works by averaging similar patches in
the image, regard- less of their spatial proximity, to preserve fine
details and structures while reducing noise. Unlike traditional
filters, such as the Bilateral, Median, and Gaussian filters, which
rely on local neighborhood information, NLM takes into
account the global image content, making it particularly effective
in preserving image textures and structures.

The key advantage of NLM over other filters lies in its ability
to handle noise without introducing blurring or losing important
details, which is crucial in medical imaging where fine structures,
such as anatomical boundaries, need to be preserved. In this
study, the NLM filter was applied with optimized parameters
based on empirical evaluations.
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Figure 1. Proposed workflow diagram for Alzheimer’s stage classification.
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Bilateral filter: The Bilateral filter smooths images while pre-
serving edges by considering both spatial proximity and intensity
similarity. However, it may struggle with complex textures or
high levels of noise, often leading to blurring at edges.

Median filter: The Median filter is widely used for noise
removal by replacing each pixel’s value with the median of the
intensities within a defined neighborhood. It is particularly
effective at preserving edges and removing outlier noise, but it
may not perform well for large or dense noise patterns, potentially
leading to the loss of fine details in the image.

Gaussian filter: The Gaussian filter is a linear smoothing
technique that applies a Gaussian function to average pixel
intensities over a region. It is effective in reducing random
variations and smoothing the image but tends to blur edges
and reduce the visibility of fine structures, which can impact
the clarity of critical features in applications such as medical
imaging. Theoreticall, NLM outperforms these filters for
medical images due to its ability to preserve intricate structural
details while efficiently removing noise. This makes it particularly
suited for applications like MRI, where maintaining the clarity of
anatomical features is critical for accurate diagnosis and analysis.
In the results section, we demonstrate the superiority of the NLM
filter through visual comparisons and numerical evaluations
against the other filtering techniques.

Resizing: Each image was resized to a target dimension
of 128x128 pixels to achieve a consistent input size across the
dataset, ensuring compatibility with the model architecture.

Normalization: Pixel values were normalized to a range of
[0,1], facilitating faster convergence during training by stabilizing
the input distribution and aiding in generalization.

This pre-processing approach effectively standardized image
quality, structure, and scale across the dataset, providing the
model with optimized inputs for training.

EfficientNet model series

The EfficientNet model series, introduced by Tan and Le
(2019), marked a significant advancement in the design of
convolutional neural networks (CNNs) by optimizing both
efficiency and accuracy across various deep learning tasks.
Traditional CNN architectures relied on manual tuning
of network depth, width, and resolution, but EfficientNet
introduced a systematic approach to scaling these dimensions
through compound scaling. This innovation enabled EfficientNet
to outperform prior CNN models on benchmarks such as
ImageNet while using fewer parameters and FLOPs (floating-
point operations per second).

EfficientNetV2S: EfficientNetV2 is a more recent evolution
of the EfficientNet architecture, designed to address efficiency
limitations. The EfficientNetV2S model achieves both speed
and accuracy by blending fused-MBConv layers in the early
stages and MBConv layers in deeper stages. Progressive learning,
a strategy where input image resolution is gradually increased,
further improves robustness to varying scales, leading to better
generalization.

Transfer learning with efficientNetV2S: In this study,
transfer learning was employed using EfficientNetV2S as the

backbone model to classify Alzheimer’s disease into four groups.
The EfficientNetV2S model was pre-trained on the ImageNet
dataset, providing a robust feature extraction framework learned
from millions of images. To adapt the model for the Alzheimer’s
classification task, its top classification layers were excluded. By
removing these task-specific layers, the model retained its ability
to extract general-purpose features while allowing the addition
of custom layers tailored to the new task. The modified
EfficientNetV2S model was initialized with an input shape of
(130, 130, 3) to match the resolution of the dataset. The output
from the feature extraction layers was passed through a Dropout
layer (0.5) to prevent overfitting, followed by a Flatten layer that
converted the feature maps into a one-dimensional vector. To
improve training stability, Batch Normalization was applied
to the flattened features. Subsequently, a Dense layer with 128
units, initialized with the He uniform initializer, was added to
optimize weight initialization. This layer was batch-normalized
and activated using ReLU for efficient learning. An additional
Dropout layer (0.5) was incorporated to further reduce overfitting
by minimizing neuron dependencies. Finally, the model included
a Dense layer with 4 output neurons, corresponding to the four
Alzheimer’s disease categories, with a softmax activation function
to output probabilities for each class.

The proposed model is illustrated in Figure 2, highlighting
the integration of EfficientNetV2S’s feature extraction capabilities
with task-specific layers for Alzheimer’s group classification. By
excluding the original classification layers and
customized components, the model was effectively fine-tuned
to achieve high accuracy on this specialized task. The input layers,
output shape, and parameters of the proposed ensemble model
are presented in Table 1.

introducing

Results and Discussions

In this section, we present the results of the experiments
conducted to evaluate the performance of various pretrained
models for Alzheimer’s disease detection, with a particular focus
on the EfficientNetV2S model under different configurations. All
experiments were conducted on an NVIDIA Tesla P100 GPU,
utilizing the Keras library in Python for model development and
training. The choice of the P100 GPU was made to accelerate
the training process and efficiently handle the computational
demands of deep learning models.

However, we acknowledge that such high-performance hardware
may not always be available in practical scenarios. Therefore,
to assess the broader applicability of the models, it is important
to consider their computational requirements on less powerful
Lightweight architectures such as MobileNet and
EfficientNetBO are optimized for efficiency and can achieve
reasonable performance on consumer-grade GPUs or even CPUs,
making them suitable for deployment in resource-constrained
environments. On the other hand, deeper models like VGG16
and ResNet, while offering high accuracy, may require substantial
computational resources, leading to increased inference time and
memory consumption on lower-end devices. The dataset was
divided into distinct training and test sets, where the test data
was separated based on different datasets to ensure an unbiased
evaluation. From the remaining training data, an 80-20 split
was applied, allocating 80% for model training and 20% for

hardware.
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Figure 2. Proposed method architecture with EfficientNetV2S backbone.
Table 1. Total layers, output shape, and parameters of the proposed model.
Layers Output Shape Parameters
Input Layers (300, 300, 3) 0
EfficientNetV2S (10, 10, 1280) 20,331,360
Dropout (10, 10, 1280) 0
Flatten 128,000 0
BatchNormalization 128,000 512,000
Dense 128 16,384,128
BatchNormalization 128 512
Activation 128 0
Dropout 128 0
Dense 4 516

validation purposes. Additionally, we employed cross-validation
to further assess the robustness and generalization capability of
the models.

The results presented here highlight the efficiency and
effectiveness of the tested models, comparing them based on
key metrics such as accuracy, Fl-score, precision, and recall
across different classes. Each subsection discusses the outcomes
of individual models, beginning with a comparison of Efficient-
NetV2S against other well-known models, followed by a detailed
examination of its performance under various learning rates, and
concluding with an in- depth analysis of its training dynamics
and classification performance.

Evaluation metrics

To evaluate the performance of the models, we use several widely
accepted metrics, each of which provides insight into different aspects

of the classification results. These metrics are crucial for Alzheimer’s
disease detection, as they account for class imbalance and the clinical
significance of accurate diagnosis:

Accuracy: The overall proportion of correctly classified
samples out of the total number of samples. While accuracy gives
a general idea of model performance, it may not be sufficient
in the presence of class imbalance, as a model that predicts the
majority class correctly can still have high accuracy while failing
to identify the minority class effectively. It is calculated as:

True Positives + True Negatives
Accuracy =

1

Precision: The proportion of positive predictions that are
actually correct, indicating the accuracy of positive predictions.
High precision is critical in medical tasks to avoid false positives,
which could lead to unnecessary treatments or interventions. It
is calculated as:

Total Samples

Journal of Emerging Engineering Technologies. 2025;1(1):1-12.
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Precision = True Positives )
" True Positives+ False Positives ( )

Recall: The proportion of actual positives that are correctly
identified by the model, showing how well the model identifies
positive instances. In the context of Alzheimer’s detection, high
recall ensures that the model does not miss any positive cases,
which is crucial for timely diagnosis and intervention. It is
calculated as:

True Positives

Recall =
eca True Positives+ False Negatives (3)

F1l-score: The harmonic mean of precision and recall,
providing a balance between the two metrics. It is particularly
useful in situations where there is an imbalance between the
positive and negative classes. The F1-score is a critical measure in
medical diagnosis, as it accounts for both false positives and false
negatives, ensuring that both precision and recall are optimized.
It is calculated as:

Precisionx Recall

Fl —score =2 X — (4)

Precision + Recall

‘These metrics are used to evaluate and compare the performance
of the models in terms of their ability to classify Alzheimer’s disease
correctly, ensuring a comprehensive assessment of both individual
class performance and overall model efficacy. The choice of these
metrics is especially relevant in Alzheimer’s detection tasks, where
both false positives and false negativescan have significant clinical
consequences. Therefore, precision, recall, and Fl-score provide a
more nuanced understanding of model performance beyond simple
accuracy, making them particularly valuable for evaluating deep
learning models in healthcare applications.

Pretrained models

To evaluate the performance of the proposed Alzheimer’s
detection model, the pretrained EfficientNetV2S model is
compared with several other well-known and widely used deep
learning architectures. These models include VGG16, ResNet,
MobileNet, InceptionResNet, InceptionV3, and Efficient-
NetB0. The selection of these models was based on their
demonstrated effectiveness in medical imaging tasks, widespread
adoption in the deep learning community, and their diverse
architectural characteristics that provide different approaches
to feature extraction and classification. VGG16 is known for its
deep yet simple structure, consisting of uniform convolutional
layers that have proven effective in image classification tasks.
ResNet incorporates residual connections to tackle the vanishing
gradient problem, enabling the training of very deep networks
without performance degradation. MobileNet is a lightweight
model designed for efficient processing on mobile and embedded
devices, utilizing depthwise separable convolutions to reduce
computational cost. InceptionResNet and InceptionV3 combine
inception modules with residual connections to optimize
accuracy and efficiency. EfficientNetBO, a base-line variant of
the EfficientNet family, balances depth, width, and resolution
using compound scaling to achieve high accuracy with minimal
computational overhead. EfficientNetV2S, the focus of this
study, builds upon the EfficientNet framework by introducing
improved training strategies and computational optimizations.
Its design emphasizes both accuracy and eficiency, making
it a strong candidate for Alzheimer’s detection. By comparing
EfficientNetV2S with these established models, we aim to showcase

its advantages in terms of performance and computational efficiency
for medical image analysis. Below, we provide a brief overview of
each model’s architecture and capabilities.

VGG16: VGGI16 is a deep convolutional neural network
characterized by its simple architecture, consisting of 16 layers with 3x3
convolutional filters and max-pooling layers [20]. Its simplicity and
uniformity in design enable it to effectively capture hierarchical
features from input images, making it suitable for complex tasks
like Alzheimer’s detection. Although VGG16 has a large number
of parameters, it remains a baseline for image classification tasks
due to its strong performance on benchmark datasets.

ResNet: ResNet, or Residual Networks, introduced the
concept of residual connections to address the vanishing
gradient problem, enabling the training of very deep networks
[21]. The model’s ability to learn residual mappings rather than
direct mappings allows it to capture more complex features and
improves performance in image classification tasks. ResNet is
particularly effective in scenarios that require deep networks for
fine-grained classification, such as Alzheimer’s detection.

MobileNet:

embedded devices by utilizing depthwise separable convolutions,

MobileNet is optimized for mobile and

which reduce computational cost while maintaining high
accuracy [22]. The model is lightweight, making it ideal for
resource-constrained environments, such as real-time medical
imaging systems. Its efficiency and compactness make it a
suitable alternative for Alzheimer’s detection, particularly in
scenarios with limited computational resources.

InceptionResNet: InceptionResNet combines the strengths
of both the Inception and ResNet architectures by integrating
residual connections into the Inception model [23]. This hybrid
approach enhances feature extraction across multiple scales while
mitigating issues such as vanishing gradients. Inception ResNet’s
ability to capture multi-level features makes it particularly
effective for complex tasks, including Alzheimer’s detection.

InceptionV3: InceptionV3 is an advanced version of the
Inception model that introduces factorized convolutions and
other optimizations to reduce computational complexity while
maintaining high accuracy [24]. It is well-suited for processing
large datasets and complex image classification tasks, making it
an ideal choice for medical image analysis, such as Alzheimer’s
detection.

EfficientNetB0: EfficientNetBO employs a compound scaling
method that simultaneously scales the depth, width, and
resolution of the model to achieve superior performance with
fewer parameters than traditional architectures [25]. Its high
efficiency in terms of both accuracy and computational cost
makes it particularly suitable for large-scale image classification
tasks, including Alzheimer’s detection.

In the following sections, we will compare the performance
of the EfficientNetV2S model with these pretrained models to
evaluate their respective effectiveness in Alzheimer’s detection.
Each model is evaluated based on accuracy, computational
efficiency, and their ability to generalize across various medical
imaging datasets.
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Comparison of Denoising Methods

MRI images are often affected by various types of noise
introduced during the scanning process, including salt and
pepper noise, speckle noise, and random noise, as illustrated in
Figure 3. Effective noise removal is crucial to ensure accurate
diagnosis while preserving essential anatomical structures. In this
study, the denoising process addresses these three types of noise
by applying four different filters to the corrupted images, aiming
to remove noise without degrading the original image content, as
shown in Figure 3. To evaluate the effectiveness of the proposed
denoising methodology, the performance of each filter is assessed
based on visual quality and quantitative metrics. The Peak Signal-
to-Noise Ratio (PSNR) and Mean Squared Error (MSE) are
computed to measure the effectiveness of noise reduction while
maintaining image fidelity. The Mean Squared Error (MSE) is
a widely used metric to measure the average squared difference
between the original image / (%, ) and the denoised image

original
I . (x). Itis calculated as follows:
| Moo
MSE = Z Z [IO’igi"u"(X’ Y) - Idenai.\'ed(xv Y)]2
Mx N S5

where M and N represent the dimensions of the image. A
lower MSE value indicates better denoising performance, as it
means the denoised image is closer to the original.

The Peak Signal-to-Noise Ratio (PSNR) is another important
metric used to assess image quality. It is expressed in decibels
(dB) and is derived from the MSE as follows:

(MAX?)

PSNR = 10" 10910 W

where MAX is the maximum possible pixel value in the
image (e.g., 255 for an 8-bit grayscale image). A higher PSNR

a} Criginal image

d) Median Filtered

el Gussian filtered

il

value indicates better image quality, as it signifies a lower level of
distortion introduced by the denoising process.

Table 2 presents a comparative analysis of image quality
using these metrics for the applied filters: 2D Median Filter, 2D
Bilateral Filter, 2D Gaussian Filter, and 2D Non-Local Means
(NLM) Filter. The results demonstrate that the 2D NLM filter
outperforms the other methods, achieving the highest PSNR of
55.29 dB and the lowest MSE 0f0.19. This indicates its superior
capability in reducing noise while preserving fine structural
details. The Gaussian filter also shows reasonable performance,
whereas the bilateral and median filters, while effective to some
extent, introduce more residual noise and less detail preservation.
These findings support the selection of the NLM filter as the
optimal choice for MRI image denoising.

Results of pre-trained models

The comparison results for all models, sorted by accuracy,
are presented in Table 3. This organized presentation allows for
a clearer understanding of each model’s strengths and limitations.
The evaluation results highlight the clear outperformance of
EfficientNetV2S, which achieved the highest accuracy of 0.981
and a macro average Fl-score of 0.986. This model demonstrates
a strong balance across all classes, with exceptional recall for
Class 2 (0.987) and Class 3 (0.975), coupled with high precision
values, making it the most reliable model for this classification
task. In comparison, the other models performed well but did
not reach the same level of accuracy or macro average F1-score.
EfficientNetBO0 achieved the second-highestaccuracy 0of0.960 and
a macro Fl-score of 0.967, followed by MobileNet and ResNet,
with accuracies of 0.948 and 0.947, respectively. InceptionResNet
showed an accuracy of 0.936 and performed strongly in Class 2
but faced challenges with Class 0. VGG16 and InceptionV3 had
the lowest accuracies at 0.905 and 0.901, respectively, with both
models showing limitations in certain class-specific recall scores.

1 NLM Filbered

Figure 3. Visual comparison of denoising methods: (a) Original MRI image, (b) Noisy image, (c) Bilateral Filter, (d) Median Filter, (e) Gaussian Filter, (f)

NLM Filter.
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Table 2. Image quality measurements using PSNR and MSE for various filters.

Filter PSNR (dB) MSE
2D Bilateral Filter 16.85 1342.67
2D Median Filter 24.53 229.10
2D Gaussian Filter 28.26 97.06
2D NLM Filter 55.29 0.19

Table 3. Performance of different pre-trained models.

Model Metric Class 0 Class 1 Class 2 Class 3 Macro Avg
InceptionV3 F1-Score 0.930 1.000 0.921 0.849 0.925
Precision 0.896 1.000 0.865 0.974 0.934
Recall 0.966 1.000 0.984 0.752 0.926
Accuracy 0.901
VGG16 F1-Score 0.875 0.957 0.929 0.880 0.910
Precision 0.96 1.000 0.901 0.890 0.938
Recall 0.804 0917 0.958 0.871 0.887
Accuracy 0.905
InceptionResNet F1-Score 0918 1.000 0.947 0.927 0.948
Precision 0.926 1.000 0.995 0.871 0.948
Recall 0911 1.000 0.903 0.991 0.951
Accuracy 0.936
ResNet F1-Score 0.920 1.000 0.959 0.940 0.955
Precision 0.936 1.000 0.945 0.954 0.959
Recall 0.905 1.000 0.973 0.926 0.951
Accuracy 0.947
MobileNet F1-Score 0.907 1.000 0.967 0.938 0.953
Precision 0.842 1.000 0.972 0.965 0.945
Recall 0.983 1.000 0.963 0913 0.965
Accuracy 0.948
EfficientNetBO F1-Score 0.948 1.000 0.969 0.951 0.967
Precision 0.921 1.000 0.964 0.970 0.964
Recall 0.978 1.000 0.973 0.933 0.971
Accuracy 0.960
EfficientNetV2S F1-Score 0.986 1.000 0.982 0.977 0.986
Precision 1.000 1.000 0.976 0.979 0.989
Recall 0.972 1.000 0.987 0.975 0.983
Accuracy 0.981

Results of efficientNetV2S model

This section examines the performance of the EfficientNetV2S
model in detail, focusing on its training and validation progression
and classification accuracy across different classes. The EfficientNet
model’s training dynamics are depicted in Figure 4. Notably, the
validation curves experience an initial spike in the early epochs,
suggesting rapid initial learning, after which they gradually converge.
‘This behavior indicates that the model quickly learns generalizable

features in the early stages. As the training progresses, the loss
curves (both training and validation) show a steady decline, with
the validation loss stabilizing towards the later epochs. This suggests
effective learning without significant overfitting. Moreover, the
model’s convergence speed is relatively fast, as evidenced by
the rapid decline in loss early on, followed by a slower, more
stable reduction in later epochs. There are no significant signs
of underfitting or over-fitting, as the training and validation
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Figure 4. Training and validation loss and accuracy curves for EfficientNetV2S model.

performance align closely over time, indicating that the model is
able to generalize well to unseen data. The absence of significant
gaps between the training and validation metrics further supports
the model’s robustness and its ability to avoid overfitting during
training. The confusion matrix in Figure 5 further highlights the
model’s classification effectiveness across all classes. Based on the
confusion matrix, we observe that the model performs very well on
most classes, with a few exceptions. Class 0 (healthy) is correctly
identified with high accuracy, showing 174 true positives, but there
are small misclassifications with 4 instances in- correctly predicted
as class 2 and 1 instance as class 3. For Class 1 (mild cognitive
impairment), the model struggles more, with 12 true positives
and no instances misclassified into other classes, indicating that the
model might find it more challenging to distinguish mild cognitive
impairment from other stages. Class 2 (Alzheimer’s) is identified
witha high degree of accuracy, withonly 8 instances misclassified
as class 3, which is a relatively low number compared to the total
of 632 true positives. Similarly, Class 3 (severe Alzheimer’s) is also
well recognized, with 437 true positives and 11 instances incorrectly
classified as class 2. The difficulties observed with class 1 and the

small misclassifications between classes 2 and 3 could stem from
the overlap in symptoms or features between the different stages
of Alzheimer’s, which might make these stages harder for the
model to differentiate clearly.

Results of efficientNetV2S at different learning rates

Table 4 presents the performance metrics of the EfficientNetV2S
model across three learning rates: 0.01, 0.001, and 0.0001. The
metrics include F1- score, precision, recall for each class, macro
averages, and overall accuracy.

At a learning rate of 0.01, the model achieved a respectable
accuracy of 0.940, with Class 1 attaining perfect precision and
recall scores. However, performance in Classes 0, 2, and 3 was
slightly lower, resulting in a macro average Fl-score of 0.956.
Reducing the learning rate to 0.001 yielded improved accuracy at
0.977, alongside enhancements in macro average F1- score and
precision, indicating the model’s increased stability and consistency
across classes. The optimal performance occurred at a learning rate
of 0.0001, where the model achieved the highest accuracy of
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Figure 5. Confusion matrix for EfficientNetV2S model classification results.
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Table 4. Performance of EfficientNetV2S at different learning rates.

Learning Rate Metric Class 0 Class 1 Class 2 Class 3 Macro Avg Accuracy
0.01 F1-Score 0.951 1.000 0.947 0.924 0.956 0.940
Precision 0.976 1.000 0.961 0.897 0.959
Recall 0.927 1.000 0.933 0.953 0.953
0.001 F1-Score 0.986 1.000 0.980 0.967 0.983 0.977
Precision 0.989 1.000 0.975 0.973 0.984
Recall 0.983 1.000 0.984 0.962 0.982
0.0001 F1-Score 0.986 1.000 0.982 0.978 0.986 0.981
Precision 1.000 1.000 0977 0.980 0.989
Recall 0.972 1.000 0.988 0.975 0.984

0.981, with consistently high F1- scores across all classes. This
setting also resulted in the best macro average precision (0.989)
and Fl-score (0.986), demonstrating that a lower learning rate
allowed the model to converge more effectively and achieve
superior performance across all evaluation metrics. This section
comprehensively evaluates the effectiveness of various pre- trained
deep learning models, focusing particularly on the EfficientNetV2S
Metrics
accuracy, precision, recall, and Fl-score are used to benchmark

model for Alzheimer’s disease detection. such as
model performance, offering insights into both overall efficiency
and class-specific outcomes. EfficientNetV2S emerges as the best-
performing model, achieving the highest accuracy (0.981) and
macro Fl-score (0.986). Its strong precision-recall balance across all

classes underlines its robustness for this medical classification task.

The comparative analysis highlights the relative strengths
and weaknesses of other models like ResNet, MobileNet, and
EfficientNetBO, which show commendable but comparatively
lower performance, while simpler architectures like VGG16 and
InceptionV3 lag behind in accuracy and class-specific metrics.
The detailed results emphasize the efficiency of EfficientNetV2S
in feature extraction and generalization. This study not only
demonstrates the superiority of EfficientNetV2S but also
showcases its potential applicability in real-world Alzheimer’s
detection scenarios, setting a high benchmark for future research
in medical imaging classification.

Conclusions

This study presents a novel approach to Alzheimer’s stage
classification using the EfficientNetV2S model with transfer
learning. The model achieved impressive performance, with an
overall accuracy of 98.1%, a macro-average F1-score of 98.6%, and
precision and recall values of 98.9% and 98.3%, respectively. These
results highlight the ability of the EfficientNetV2S architecture to
handle the complexities of Alzheimer’s stage prediction effectively.
Moreover, the model outperformed well-known architectures
such as VGG16, ResNet, MobileNet, and EfficientNetB0, with
consistent improvements in classification accuracy across all stages
of the disease. The results confirm the strength of using advanced
deep learning architectures in medical imaging tasks. Future
studies could investigate integrating multimodal data, such
as clinical history and biomarkers, to complement MRI-based
predictions. Additionally, longitudinal analysis of MRI scans to
track disease progression and refine staging predictions offers a

promising direction. Exploring cross-domain applications of the
EfficientNetV2S model for other neurodegenerative diseases or
medical imaging challenges could further validate its versatility
and effectiveness.
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