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Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects millions of individuals 
worldwide, leading to memory loss, cognitive decline, and functional impairments. Early and accurate 
detection of AD is critical for effective management and treatment planning. This paper presents an efficient 
approach for Alzheimer’s disease classification using a deep learning model based on the EfficientNetV2S 
architecture, leveraging transfer learning to enhance performance. EfficientNetV2S, an evolution of the 
EfficientNet model, is designed to balance speed and accuracy by combining fused-MBConv and MBConv 
layers, making it highly suitable for tasks requiring both high performance and computational efficiency. 
In this study, we fine-tune a model initialized with ImageNet-pretrained weights on a domain-specific 
Alzheimer’s dataset. Furthermore, we rigorously validate the model’s performance using k-fold cross-
validation, confirming its reliability and generalizability across diverse data subsets. The proposed model 
achieved an accuracy of 98.1%, a precision of 98.9%, recall of 98.3%, and F1-score of 98.6%. These results 
demonstrate significant improvements in performance, outperforming other state-of-the-art models. 
Transfer learning allows the model to adapt pretrained features to the Alzheimer’s domain, speeding up 
training and improving generalization. Our findings highlight the potential of EfficientNetV2S for high-
performance applications in medical image classification, where both computational efficiency and 
accuracy are crucial. 

Keywords: Alzheimer’s disease, Machine learning, Deep learning, Image preprocessing, Magnetic 
resonance imaging (MRI)

Introduction

Alzheimer’s disease (AD), a progressive neurodegenerative disorder, presents a growing challenge 
to healthcare systems worldwide due to its complex nature and devastating impact on patients 
and their families. Early detection of Alzheimer’s is crucial as it enables timely intervention and 
management, potentially slowing disease progression and improving quality of life. One of the 
most effective tools for AD detection is Magnetic Resonance Imaging (MRI), which allows non-
invasive visualization of brain structure and abnormalities.

However, interpreting MRI scans for Alzheimer’s detection is highly complex and requires 
expertise in distinguishing subtle changes in brain morphology across different stages of the 
disease. In recent years, computer-aided diagnostic (CAD) techniques, powered by artificial 
intelligence (AI) and machine learning (ML), have gained significant attention for their ability 
to automate and enhance this process. These methods have shown promise in analyzing MRI 
images to detect Alzheimer’s-related changes, but challenges remain due to issues such as small 
datasets, imbalanced class distributions, and the difficulty of capturing complex brain features.

The field of Alzheimer’s detection has seen a variety of approaches utilizing both machine 
learning (ML) and deep learning (DL) techniques. In traditional ML methods, features are 
manually extracted from MRI images, and algorithms such as support vector machines (SVMs), 
random forests, and logistic regression are applied for classification. While these methods have 
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demonstrated some success, they often depend heavily on feature 
engineering and expert knowledge, which can be limiting. Deep 
learning (DL) techniques, particularly convolutional neural 
networks (CNNs), have revolutionized the field by automating 
feature extraction and achieving state-of-the-art performance in 
image classification tasks. These DL models, however, require large 
amounts of labeled data and substantial computational resources 
for training. To address this, transfer learning has emerged as a 
powerful technique, where a model pretrained on a large dataset 
(such as ImageNet) is fine-tuned on the target dataset. This 
approach significantly reduces the need for large labeled datasets 
and computational resources, making it particularly useful in 
medical imaging applications where labeled data may be scarce.

In this study, we propose a novel approach for Alzheimer’s 
disease classification using MRI scans, by combining transfer 
learning with the Efficient- NetV2S model. EfficientNetV2S is an 
advanced convolutional neural network known for its efficiency 
and scalability, achieving high performance while maintaining 
relatively low computational costs. The model is fine-tuned 
on a preprocessed and balanced dataset comprising MRI scans 
categorized into four classes: Non-Demented, Very Mild Demented, 
Mild Demented, and Moderate Demented. The framework of our 
method involves several key stages: dataset preprocessing, model 
selection and fine-tuning, and performance evaluation.

First, the MRI dataset undergoes a series of preprocessing steps, 
including normalization of pixel intensity values to a standard 
range, spatial resizing of MRI images to ensure consistency, 
and bilateral filtering for noise reduction while preserving edge 
details. To enhance model performance and increase the diversity 
of training data, data augmentation techniques such as random 
rotations, flips, and scaling are applied during training. These 
augmentations help the model generalize better to unseen data by 
simulating variations commonly observed in real-world scenarios. 
The EfficientNetV2S model, pre-trained on the ImageNet dataset, 
is selected for the Alzheimer’s classification task and fine-tuned on 
the augmented MRI dataset to learn specific features necessary 
for distinguishing between different Alzheimer’s stages. The model 
is trained using a classification loss function, such as categorical 
cross-entropy, and its performance is evaluated using metrics such 
as accuracy, precision, recall, and F1 score. After training, the 
model’s results are compared with other state-of-the-art methods 
for Alzheimer’s detection, including six other pre-trained models.

The contributions of this study are as follows:

High-performance Alzheimer’s classification

 We demonstrate the effectiveness of EfficientNetV2S in 
classifying Alzheimer’s disease from MRI scans, emphasizing its 
scalability, accuracy, and efficiency in medical image analysis.

Comprehensive model comparison 

Through extensive experiments, we compare the performance 
of seven pretrained models—EfficientNetB0, MobileNet, ResNet, 
InceptionResNet, VGG16, InceptionV3, and EfficientNetV2S—to 
identify the most suitable architecture for Alzheimer’s disease 
detection.

Impact of learning rate adjustments 

We analyze the influence of learning rate modifications on 

model performance, underscoring its critical role in optimizing 
training processes and achieving superior results.

Our findings demonstrate that the proposed approach 
significantly out-performs other models in terms of accuracy and 
F1 score, especially in distinguishing between the four classes 
of Alzheimer’s disease severity: Non-Demented, Very Mild 
Demented, Mild Demented, and Moderate Demented. This 
study underscores the importance of integrating advanced deep 
learning models with careful experimental analysis, contributing 
to the growing potential of AI in the automated diagnosis of 
Alzheimer’s disease.

The structure of this paper is organized as follows: Section 2 
reviews related works, focusing on machine learning, deep learning, 
and transfer learning methods for Alzheimer’s disease (AD) 
detection. Section 3 describes the dataset and preprocessing 
steps and outlines the proposed framework, highlighting the use 
of EfficientNetV2S. Section 4 presents the experimental results, 
showcasing the performance comparison of seven pretrained 
models, including EfficientNetV2S, and analyzing the impact 
of learning rates on model performance. Section 6 concludes the 
paper by summarizing the contributions and providing directions 
for future research.

Related Works

Alzheimer’s disease (AD) detection using MRI images has 
become a crucial area of research, given the increasing importance 
of early diagnosis in managing the disease. Over the years, various 
machine learning (ML) and deep learning (DL) techniques 
have been employed to identify and classify brain abnormalities 
indicative of Alzheimer’s. This section reviews key advancements 
in these approaches, starting with traditional machine learning 
methods, followed by deep learning techniques, and finally, the 
utilization of transfer learning with pretrained models.

Machine learning techniques for Alzheimer detection

Classical machine learning techniques have been widely used for 
Alzheimer’s Disease (AD) detection from MRI images. Methods 
such as Support Vector Machines (SVM), Decision Trees (DT), 
and Random Forest (RF) have been applied to classify AD and 
Normal Control (NC) images. For example, Vaithinathan K 
employed Random Forest, KNN, and linear SVM, achieving 
89.58% sensitivity and 85.82% specificity using the ADNI 
dataset [1]. Similarly, Kavitha et al. applied decision trees, 
random forests, SVM, and XGBoost, achieving an accuracy 
of 83% for early AD detection [2]. These traditional machine 
learning methods often rely on manually engineered features 
and are effective when the dataset is well-structured and 
the features are properly selected, such as through correlation or 
information gain techniques. Additionally, advanced models like 
XGBoost, when combined with feature extraction techniques 
such as Discrete Wavelet Transform (DWT), have demonstrated 
even higher performance, with one study achieving an 
accuracy of 97.88% [3].

Recent work, such as that by Rao et al., highlights the 
application of 3D MRI technology in AD detection, where 2D 
slices of white and grey matter are taken from coronal, sagittal, 
and axial orientations, followed by feature extraction using 
Multi-Layer Perceptron (MLP) and SVM classifiers [4]. This 
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approach, evaluated through Precision, Recall, Accuracy, and 
F1-Score, emphasizes the critical role of machine learning in 
providing high- accuracy, early-stage AD diagnosis, which has 
the potential to alleviate the extensive healthcare burdens of this 
condition. Despite the promising outcomes, traditional machine 
learning methods have limitations. They heavily depend on the 
expertise of the researcher to select relevant features and are often 
unable to capture the complex relationships within the data, 
which is particularly important in medical imaging tasks like 
Alzheimer’s detection.

Deep learning techniques for Alzheimer detection

On the other hand, neural networks, especially Convolutional 
Neural Networks (CNN), have gained significant attention for 
their ability to automatically learn complex features from MRI 
images. Several studies have leveraged CNNs for AD detection, 
including Weimingling et al., who achieved an accuracy of 81.4% 
and an AUC of 87.8% by using an Extreme Learning Machine 
(ELM) for classification after extracting features from patch 
images [5]. Other studies, like those by Abolbaher et al. [6] 
and Amir Ebrahimi et al. [7], used deep neural networks (DNN) 
and combinations of 2D/3D CNNs with Recurrent Neural 
Networks (RNN) to classify AD with accuracies above 90%. 
A further CNN-based framework achieved 99.6% accuracy for 
binary AD classification and 97.5% for multi-class classification 
on the ADNI dataset, highlighting deep learning’s potential to 
improve AD diagnosis significantly [8].

Further advancements include a VGG-16-based approach, 
where the images were preprocessed by converting 3D to 2D, 
resizing, and then passed through VGG-16 for feature extraction, 
followed by classification using various methods like SVM, Linear 
Discriminant Analysis, and K-means clustering. This method 
achieved a remarkable 99.95% accuracy on fMRI datasets and 
73.46% on PET datasets, demonstrating the advantages of using 
CNNs alongside traditional classifiers [9]. Recently, El-Assy et 
al. introduced a dual-CNN architecture, achieving over 99% 
accuracy across multiple AD categories by combining distinct 
CNN models to capture both local and global MRI features 
[10]. These approaches have shown strong classification accuracy 
and robustness compared to classical methods, enhancing the 
effectiveness of early AD detection. However, deep learning 
techniques require large amounts of annotated data and 
substantial computational resources for training, which can be a 
limiting factor in clinical settings where annotated MRI datasets 
are often limited.

Transfer learning for Alzheimer detection

To overcome the limitations of large annotated datasets and 
high computational demands, transfer learning using pretrained 
models has emerged as a powerful solution. Transfer learning 
allows models to leverage knowledge learned from large-scale 
datasets in one domain and apply it to a different, often 
smaller, dataset. This approach has been particularly beneficial 
for Alzheimer’s detection using MRI images, where pretrained 
models on general image datasets such as ImageNet have been 
fine-tuned for specific medical imaging tasks. The use of deep 
learning in medical imaging has gained momentum, with MRI 
playing a crucial role in Alzheimer’s disease (AD) diagnosis—a 
progressive neurodegenerative disorder affecting memory and 

cognitive function. MRI-based studies classify early AD stages, 
including cognitively normal (CN), mild cognitive impairment 
(MCI), and AD, using CNN-based transfer learning models. 
In one study, 2,182 MRI images from the ADNI database 
were processed using various CNN architectures, achieving top 
results with EfficientNet models, particularly EfficientNetB0, 
which reached a 92.98% accuracy rate [11]. EfficientNetB3 
further excelled in precision, sensitivity, and specificity. Another 
study using EfficientNet-b0, combined with both end-to-end 
and transfer learning, achieved up to 95.29% accuracy for 
classifying stable mild cognitive impairment (sMCI) versus AD 
and 87.38% accuracy for multiclass AD stages classification [12]. 
Different studies have employed additional pre-trained networks like 
AlexNet, ResNet-18, and GoogleNet on ADNI datasets, with 
classification accuracies between 94% and 97.5% [13]. The 
AlexNet model demonstrated particularly high sensitivity 
(100%) and specificity (98.21%), making it promising for 
computer-aided diagnostics (CAD) in AD detection. Beyond 
MRI, combining data from multiple imaging sources, such 
as fused CT-MRI and EEG signals, has been explored with 
the HEMRDTL model, using VGG-19 and robust principal 
component analysis (RPCA) to enhance accuracy [14]. This 
hybrid model showed notable effectiveness, underscoring the 
benefit of integrating structural and functional brain data 
for AD detection. Some studies have also investigated the use 
of lightweight neural networks like MobileNet for mobile and 
resource-constrained environments, which yielded favorable results 
with over 96% accuracy in multi-class AD classification 
[15,10]. This model’s minimal computational demand offers 
practical benefits for mobile diagnostics, potentially expanding 
accessibility in clinical settings. Other studies highlighted 
Xception and other CNN architectures for multi-class MRI 
classification, with the Xception model achieving an accuracy of 
99.6%, demonstrating the promise of deep learning and transfer 
learning for scalable, non-invasive AD screening [16]. Additionally, 
a transfer learning-based approach using MRI scans from the 
ADNI database was proposed to classify AD stages, including 
normal control (NC), early mild cognitive impairment (EMCI), 
late mild cognitive impairment (LMCI), and AD. This method 
involves extracting gray matter and fine-tuning a pre-trained 
VGG model with a stepwise freezing strategy, demonstrating 
superior classification performance [17]. A similar deep learning 
framework utilizing convolutional neural networks (CNN) for 
AD classification was developed, incorporating pre-processing, 
data augmentation, cross-validation, and feature extraction 
[18]. Two methods were explored: a simple CNN model and 
a fine-tuned VGG16 model with transfer learning on various 
datasets. The framework achieved significant performance gains 
with minimal labeled data and prior domain knowledge, with the 
CNN model achieving 99.95% accuracy and the fine-tuned VGG16 
model achieving 97.44% accuracy, showing promising results 
with low computational complexity and minimal overfitting.

Moreover, a study used MRI data from Kaggle, including 
non-dementia, very mild dementia, mild dementia, and 
moderate dementia categories. Three pre-trained networks—
VGG-19, ResNet-50, and InceptionV3—were assessed, achieving 
classification accuracies of 92.86%, 85.99%, and 91.04%, 
respectively, demonstrating the efficacy of transfer learning for 
AD classification [19]. While existing methods have made notable 

Citation: Askarizade M. Efficient Alzheimer’s disease classification using transfer learning with efficientNETV2S. Journal of Emerging Engineering 
Technologies. 2025;1(1):1-12.



4Journal of Emerging Engineering Technologies. 2025;1(1):1-12.

strides in Alzheimer’s disease classification, challenges such as class 
imbalance, limited data availability, and the need for computational 
efficiency persist. Traditional ML approaches often depend heavily 
on manual feature engineering, while CNN-based methods, despite 
their high performance, require extensive labeled datasets and 
computational resources. Transfer learning has addressed some of 
these issues, yet most studies lack robust mechanisms to optimize 
model scalability. Our approach leverages an advanced deep 
learning architecture, integrating EfficientNetV2S for Alzheimer’s 
severity classification, providing a more efficient and scalable 
solution compared to prior works.

Proposed Methodology

This section presents a transfer learning approach using 
EfficientNetV2S for Alzheimer’s stage classification. As illustrated 
in Figure 1, training images are first augmented and normalized 
to balance the dataset. The preprocessed images are then used 
to fine-tune the pretrained EfficientNetV2S model, followed by 
additional CNN layers for task-specific adaptation. Finally, the 
trained model is evaluated on test images to assess classification 
performance across Alzheimer’s stages. This approach effectively 
leverages pretrained features and data augmentation to enhance 
model accuracy and robustness.

Dataset description and augmentation

The dataset1 used in this study is an augmented version of 
the original Kaggle Alzheimer’s dataset2, which includes images 
from four diagnostic cat-egories: ”No Impairment,” ”Very Mild 
Impairment,” ”Mild Impairment,” and	 “Moderate Impairment.” 
The original dataset exhibited a significant class imbalance, with 
class distributions of 3,200 samples for “No Impairment,” 2,240 
for “Very Mild Impairment,” 896 for “Mild Impairment,” and 
only 64 for “Moderate Impairment.” This disparity often led 
to classifiers being biased toward the majority class, which is 
particularly problematic in early Alzheimer’s detection where 
false negatives can be critical. To address this issue, a data 
augmentation approach employing Wasser-stein Generative 
Adversarial Networks with Gradient Penalty (WGANs-GP) was 

implemented. WGANs-GP effectively mitigates mode collapse, 
a common problem in traditional DC-GANs, by generating 
synthetic MRI images for the minority classes, thereby enhancing 
diversity and rectifying the class imbalance. After augmentation, 
each class was brought to a balanced distribution, with all classes 
now containing 2,560 samples. This resulting dataset, which 
comprises a mix of real and synthetic images, significantly 
improved model performance, particularly in recognizing 
minority classes.

1https://www.kaggle.com/datasets/lukechugh/best-alzheimer-mri-
dataset-99-accuracy

2https://www.kaggle.com/datasets/marcopinamonti/alzheimer-
mri-4-classes-dataset

Dataset pre-processing

The pre-processing pipeline in this study aimed to 
standardize and enhance the quality of MRI images to optimize 
model performance for Alzheimer’s detection. Each image was 
processed in grayscale format to reduce computational complexity, 
with the following sequential steps applied to each image in 
the dataset:

Noise reduction: Non-Local Means (NLM) filtering was 
employed for noise reduction in MRI images. NLM is a powerful 
denoising technique that works by averaging similar patches in 
the image, regard- less of their spatial proximity, to preserve fine 
details and structures while reducing noise. Unlike traditional 
filters, such as the Bilateral, Median, and Gaussian filters, which 
rely on local neighborhood information, NLM takes into 
account the global image content, making it particularly effective 
in preserving image textures and structures.

The key advantage of NLM over other filters lies in its ability 
to handle noise without introducing blurring or losing important 
details, which is crucial in medical imaging where fine structures, 
such as anatomical boundaries, need to be preserved. In this 
study, the NLM filter was applied with optimized parameters 
based on empirical evaluations.

Figure 1. Proposed workflow diagram for Alzheimer’s stage classification.
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Bilateral filter: The Bilateral filter smooths images while pre- 
serving edges by considering both spatial proximity and intensity 
similarity. However, it may struggle with complex textures or 
high levels of noise, often leading to blurring at edges.

Median filter: The Median filter is widely used for noise 
removal by replacing each pixel’s value with the median of the 
intensities within a defined neighborhood. It is particularly 
effective at preserving edges and removing outlier noise, but it 
may not perform well for large or dense noise patterns, potentially 
leading to the loss of fine details in the image.

Gaussian filter: The Gaussian filter is a linear smoothing 
technique that applies a Gaussian function to average pixel 
intensities over a region. It is effective in reducing random 
variations and smoothing the image but tends to blur edges 
and reduce the visibility of fine structures, which can impact 
the clarity of critical features in applications such as medical 
imaging. Theoretically, NLM outperforms these filters for 
medical images due to its ability to preserve intricate structural 
details while efficiently removing noise. This makes it particularly 
suited for applications like MRI, where maintaining the clarity of 
anatomical features is critical for accurate diagnosis and analysis. 
In the results section, we demonstrate the superiority of the NLM 
filter through visual comparisons and numerical evaluations 
against the other filtering techniques.

Resizing: Each image was resized to a target dimension 
of 128x128 pixels to achieve a consistent input size across the 
dataset, ensuring compatibility with the model architecture.

Normalization: Pixel values were normalized to a range of 
[0,1], facilitating faster convergence during training by stabilizing 
the input distribution and aiding in generalization.

This pre-processing approach effectively standardized image 
quality, structure, and scale across the dataset, providing the 
model with optimized inputs for training.

EfficientNet model series

The EfficientNet model series, introduced by Tan and Le 
(2019), marked a significant advancement in the design of 
convolutional neural networks (CNNs) by optimizing both 
efficiency and accuracy across various deep learning tasks. 
Traditional CNN architectures relied on manual tuning 
of network depth, width, and resolution, but EfficientNet 
introduced a systematic approach to scaling these dimensions 
through compound scaling. This innovation enabled EfficientNet 
to outperform prior CNN models on benchmarks such as 
ImageNet while using fewer parameters and FLOPs (floating-
point operations per second).

EfficientNetV2S: EfficientNetV2 is a more recent evolution 
of the EfficientNet architecture, designed to address efficiency 
limitations. The EfficientNetV2S model achieves both speed 
and accuracy by blending fused-MBConv layers in the early 
stages and MBConv layers in deeper stages. Progressive learning, 
a strategy where input image resolution is gradually increased, 
further improves robustness to varying scales, leading to better 
generalization.

Transfer learning with efficientNetV2S: In this study, 
transfer learning was employed using EfficientNetV2S as the 

backbone model to classify Alzheimer’s disease into four groups. 
The EfficientNetV2S model was pre-trained on the ImageNet 
dataset, providing a robust feature extraction framework learned 
from millions of images. To adapt the model for the Alzheimer’s 
classification task, its top classification layers were excluded. By 
removing these task-specific layers, the model retained its ability 
to extract general-purpose features while allowing the addition 
of custom layers tailored to the new task. The modified 
EfficientNetV2S model was initialized with an input shape of 
(130, 130, 3) to match the resolution of the dataset. The output 
from the feature extraction layers was passed through a Dropout 
layer (0.5) to prevent overfitting, followed by a Flatten layer that 
converted the feature maps into a one-dimensional vector. To 
improve training stability, Batch Normalization was applied 
to the flattened features. Subsequently, a Dense layer with 128 
units, initialized with the He uniform initializer, was added to 
optimize weight initialization. This layer was batch-normalized 
and activated using ReLU for efficient learning. An additional 
Dropout layer (0.5) was incorporated to further reduce overfitting 
by minimizing neuron dependencies. Finally, the model included 
a Dense layer with 4 output neurons, corresponding to the four 
Alzheimer’s disease categories, with a softmax activation function 
to output probabilities for each class.

The proposed model is illustrated in Figure 2, highlighting 
the integration of EfficientNetV2S’s feature extraction capabilities 
with task-specific layers for Alzheimer’s group classification. By 
excluding the original classification layers and introducing 
customized components, the model was effectively fine-tuned 
to achieve high accuracy on this specialized task. The input layers, 
output shape, and parameters of the proposed ensemble model 
are presented in Table 1.

Results and Discussions

In this section, we present the results of the experiments 
conducted to evaluate the performance of various pretrained 
models for Alzheimer’s disease detection, with a particular focus 
on the EfficientNetV2S model under different configurations. All 
experiments were conducted on an NVIDIA Tesla P100 GPU, 
utilizing the Keras library in Python for model development and 
training. The choice of the P100 GPU was made to accelerate 
the training process and efficiently handle the computational 
demands of deep learning models.

However, we acknowledge that such high-performance hardware 
may not always be available in practical scenarios. Therefore, 
to assess the broader applicability of the models, it is important 
to consider their computational requirements on less powerful 
hardware. Lightweight architectures such as MobileNet and 
EfficientNetB0 are optimized for efficiency and can achieve 
reasonable performance on consumer-grade GPUs or even CPUs, 
making them suitable for deployment in resource-constrained 
environments. On the other hand, deeper models like VGG16 
and ResNet, while offering high accuracy, may require substantial 
computational resources, leading to increased inference time and 
memory consumption on lower-end devices. The dataset was 
divided into distinct training and test sets, where the test data 
was separated based on different datasets to ensure an unbiased 
evaluation. From the remaining training data, an 80-20 split 
was applied, allocating 80% for model training and 20% for 
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validation purposes. Additionally, we employed cross-validation 
to further assess the robustness and generalization capability of 
the models.

The results presented here highlight the efficiency and 
effectiveness of the tested models, comparing them based on 
key metrics such as accuracy, F1-score, precision, and recall 
across different classes. Each subsection discusses the outcomes 
of individual models, beginning with a comparison of Efficient-
NetV2S against other well-known models, followed by a detailed 
examination of its performance under various learning rates, and 
concluding with an in- depth analysis of its training dynamics 
and classification performance.

Evaluation metrics

To evaluate the performance of the models, we use several widely 
accepted metrics, each of which provides insight into different aspects 

of the classification results. These metrics are crucial for Alzheimer’s 
disease detection, as they account for class imbalance and the clinical 
significance of accurate diagnosis:

Accuracy: The overall proportion of correctly classified 
samples out of the total number of samples. While accuracy gives 
a general idea of model performance, it may not be sufficient 
in the presence of class imbalance, as a model that predicts the 
majority class correctly can still have high accuracy while failing 
to identify the minority class effectively. It is calculated as:

 

Accuracy � ���� ��������� � ���� ���������
����� �������    (1) 

 

Precision � ���� ��������� 
���� ���������� ����� ���������   (2) 

 

Recall � ���� ��������� 
���� ���������� ����� ���������     (3)  

 

F1 � score � 2 � ���������� ������
��������� � ������   (4) 

 

 

 

 

 

�𝑀𝑀�� � 10 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙��  �𝑀𝑀𝑀𝑀𝑀𝑀
��

𝑀𝑀𝑀𝑀𝑀𝑀  

  		 (1)

Precision: The proportion of positive predictions that are 
actually correct, indicating the accuracy of positive predictions. 
High precision is critical in medical tasks to avoid false positives, 
which could lead to unnecessary treatments or interventions. It 
is calculated as:

Figure 2. Proposed method architecture with EfficientNetV2S backbone.

Table 1. Total layers, output shape, and parameters of the proposed model.

Layers Output Shape Parameters

Input Layers (300, 300, 3) 0

EfficientNetV2S (10, 10, 1280) 20,331,360

Dropout (10, 10, 1280) 0

Flatten 128,000 0

BatchNormalization 128,000 512,000

Dense 128 16,384,128

BatchNormalization 128 512

Activation 128 0

Dropout 128 0

Dense 4 516
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Precision � ���� ��������� 
���� ���������� ����� ���������   (2) 

 

Recall � ���� ��������� 
���� ���������� ����� ���������     (3)  

 

F1 � score � 2 � ���������� ������
��������� � ������   (4) 
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��

𝑀𝑀𝑀𝑀𝑀𝑀  

  		  (2)

Recall: The proportion of actual positives that are correctly 
identified by the model, showing how well the model identifies 
positive instances. In the context of Alzheimer’s detection, high 
recall ensures that the model does not miss any positive cases, 
which is crucial for timely diagnosis and intervention. It is 
calculated as:
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F1-score: The harmonic mean of precision and recall, 
providing a balance between the two metrics. It is particularly 
useful in situations where there is an imbalance between the 
positive and negative classes. The F1-score is a critical measure in 
medical diagnosis, as it accounts for both false positives and false 
negatives, ensuring that both precision and recall are optimized. 
It is calculated as:
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These metrics are used to evaluate and compare the performance 
of the models in terms of their ability to classify Alzheimer’s disease 
correctly, ensuring a comprehensive assessment of both individual 
class performance and overall model efficacy. The choice of these 
metrics is especially relevant in Alzheimer’s detection tasks, where 
both false positives and false negatives can have significant clinical 
consequences. Therefore, precision, recall, and F1-score provide a 
more nuanced understanding of model performance beyond simple 
accuracy, making them particularly valuable for evaluating deep 
learning models in healthcare applications.

Pretrained models

To evaluate the performance of the proposed Alzheimer’s 
detection model, the pretrained EfficientNetV2S model is 
compared with several other well-known and widely used deep 
learning architectures. These models include VGG16, ResNet, 
MobileNet, InceptionResNet, InceptionV3, and Efficient- 
NetB0. The selection of these models was based on their 
demonstrated effectiveness in medical imaging tasks, widespread 
adoption in the deep learning community, and their diverse 
architectural characteristics that provide different approaches 
to feature extraction and classification. VGG16 is known for its 
deep yet simple structure, consisting of uniform convolutional 
layers that have proven effective in image classification tasks. 
ResNet incorporates residual connections to tackle the vanishing 
gradient problem, enabling the training of very deep networks 
without performance degradation. MobileNet is a lightweight 
model designed for efficient processing on mobile and embedded 
devices, utilizing depthwise separable convolutions to reduce 
computational cost. InceptionResNet and InceptionV3 combine 
inception modules with residual connections to optimize 
accuracy and efficiency. EfficientNetB0, a base-line variant of 
the EfficientNet family, balances depth, width, and resolution 
using compound scaling to achieve high accuracy with minimal 
computational overhead. EfficientNetV2S, the focus of this 
study, builds upon the EfficientNet framework by introducing 
improved training strategies and computational optimizations. 
Its design emphasizes both accuracy and efficiency, making 
it a strong candidate for Alzheimer’s detection. By comparing 
EfficientNetV2S with these established models, we aim to showcase 

its advantages in terms of performance and computational efficiency 
for medical image analysis. Below, we provide a brief overview of 
each model’s architecture and capabilities.

VGG16: VGG16 is a deep convolutional neural network 
characterized by its simple architecture, consisting of 16 layers with 3x3 
convolutional filters and max-pooling layers [20]. Its simplicity and 
uniformity in design enable it to effectively capture hierarchical 
features from input images, making it suitable for complex tasks 
like Alzheimer’s detection. Although VGG16 has a large number 
of parameters, it remains a baseline for image classification tasks 
due to its strong performance on benchmark datasets.

ResNet: ResNet, or Residual Networks, introduced the 
concept of residual connections to address the vanishing 
gradient problem, enabling the training of very deep networks 
[21]. The model’s ability to learn residual mappings rather than 
direct mappings allows it to capture more complex features and 
improves performance in image classification tasks. ResNet is 
particularly effective in scenarios that require deep networks for 
fine-grained classification, such as Alzheimer’s detection.

MobileNet: MobileNet is optimized for mobile and 
embedded devices by utilizing depthwise separable convolutions, 
which reduce computational cost while maintaining high 
accuracy [22]. The model is lightweight, making it ideal for 
resource-constrained environments, such as real-time medical 
imaging systems. Its efficiency and compactness make it a 
suitable alternative for Alzheimer’s detection, particularly in 
scenarios with limited computational resources.

InceptionResNet: InceptionResNet combines the strengths 
of both the Inception and ResNet architectures by integrating 
residual connections into the Inception model [23]. This hybrid 
approach enhances feature extraction across multiple scales while 
mitigating issues such as vanishing gradients. Inception ResNet’s 
ability to capture multi-level features makes it particularly 
effective for complex tasks, including Alzheimer’s detection.

InceptionV3: InceptionV3 is an advanced version of the 
Inception model that introduces factorized convolutions and 
other optimizations to reduce computational complexity while 
maintaining high accuracy [24]. It is well-suited for processing 
large datasets and complex image classification tasks, making it 
an ideal choice for medical image analysis, such as Alzheimer’s 
detection.

EfficientNetB0: EfficientNetB0 employs a compound scaling 
method that simultaneously scales the depth, width, and 
resolution of the model to achieve superior performance with 
fewer parameters than traditional architectures [25]. Its high 
efficiency in terms of both accuracy and computational cost 
makes it particularly suitable for large-scale image classification 
tasks, including Alzheimer’s detection.

In the following sections, we will compare the performance 
of the EfficientNetV2S model with these pretrained models to 
evaluate their respective effectiveness in Alzheimer’s detection. 
Each model is evaluated based on accuracy, computational 
efficiency, and their ability to generalize across various medical 
imaging datasets.
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Comparison of Denoising Methods

MRI images are often affected by various types of noise 
introduced during the scanning process, including salt and 
pepper noise, speckle noise, and random noise, as illustrated in 
Figure 3. Effective noise removal is crucial to ensure accurate 
diagnosis while preserving essential anatomical structures. In this 
study, the denoising process addresses these three types of noise 
by applying four different filters to the corrupted images, aiming 
to remove noise without degrading the original image content, as 
shown in Figure 3. To evaluate the effectiveness of the proposed 
denoising methodology, the performance of each filter is assessed 
based on visual quality and quantitative metrics. The Peak Signal-
to-Noise Ratio (PSNR) and Mean Squared Error (MSE) are 
computed to measure the effectiveness of noise reduction while 
maintaining image fidelity. The Mean Squared Error (MSE) is 
a widely used metric to measure the average squared difference 
between the original image Ioriginal(x, y) and the denoised image 
Idenoised(x, y). It is calculated as follows:
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where M and N represent the dimensions of the image. A 
lower MSE value indicates better denoising performance, as it 
means the denoised image is closer to the original. 

T﻿he Peak Signal-to-Noise Ratio (PSNR) is another important 
metric used to assess image quality. It is expressed in decibels 
(dB) and is derived from the MSE as follows:
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where MAX is the maximum possible pixel value in the 
image (e.g., 255 for an 8-bit grayscale image). A higher PSNR 

value indicates better image quality, as it signifies a lower level of 
distortion introduced by the denoising process.

Table 2 presents a comparative analysis of image quality 
using these metrics for the applied filters: 2D Median Filter, 2D 
Bilateral Filter, 2D Gaussian Filter, and 2D Non-Local Means 
(NLM) Filter. The results demonstrate that the 2D NLM filter 
outperforms the other methods, achieving the highest PSNR of 
55.29 dB and the lowest MSE of 0.19. This indicates its superior 
capability in reducing noise while preserving fine structural 
details. The Gaussian filter also shows reasonable performance, 
whereas the bilateral and median filters, while effective to some 
extent, introduce more residual noise and less detail preservation. 
These findings support the selection of the NLM filter as the 
optimal choice for MRI image denoising.

Results of pre-trained models

The comparison results for all models, sorted by accuracy, 
are presented in Table 3. This organized presentation allows for 
a clearer understanding of each model’s strengths and limitations. 
The evaluation results highlight the clear outperformance of 
EfficientNetV2S, which achieved the highest accuracy of 0.981 
and a macro average F1-score of 0.986. This model demonstrates 
a strong balance across all classes, with exceptional recall for 
Class 2 (0.987) and Class 3 (0.975), coupled with high precision 
values, making it the most reliable model for this classification 
task. In comparison, the other models performed well but did 
not reach the same level of accuracy or macro average F1-score. 
EfficientNetB0 achieved the second-highest accuracy of 0.960 and 
a macro F1-score of 0.967, followed by MobileNet and ResNet, 
with accuracies of 0.948 and 0.947, respectively. InceptionResNet 
showed an accuracy of 0.936 and performed strongly in Class 2 
but faced challenges with Class 0. VGG16 and InceptionV3 had 
the lowest accuracies at 0.905 and 0.901, respectively, with both 
models showing limitations in certain class-specific recall scores.

Figure 3. Visual comparison of denoising methods: (a) Original MRI image, (b) Noisy image, (c) Bilateral Filter, (d) Median Filter, (e) Gaussian Filter, (f) 
NLM Filter.
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Results of efficientNetV2S model

This section examines the performance of the EfficientNetV2S 
model in detail, focusing on its training and validation progression 
and classification accuracy across different classes. The EfficientNet 
model’s training dynamics are depicted in Figure 4. Notably, the 
validation curves experience an initial spike in the early epochs, 
suggesting rapid initial learning, after which they gradually converge. 
This behavior indicates that the model quickly learns generalizable 

features in the early stages. As the training progresses, the loss 
curves (both training and validation) show a steady decline, with 
the validation loss stabilizing towards the later epochs. This suggests 
effective learning without significant overfitting. Moreover, the 
model’s convergence speed is relatively fast, as evidenced by 
the rapid decline in loss early on, followed by a slower, more 
stable reduction in later epochs. There are no significant signs 
of underfitting or over-fitting, as the training and validation 

Table 2. Image quality measurements using PSNR and MSE for various filters.

Filter PSNR (dB)	 MSE

2D Bilateral Filter 16.85	 1342.67

2D Median Filter 24.53 229.10

2D Gaussian Filter 28.26 97.06

2D NLM Filter 55.29 0.19

Table 3. Performance of different pre-trained models.

Model Metric Class 0 Class 1 Class 2 Class 3 Macro Avg

InceptionV3

 

 

F1-Score 0.930 1.000 0.921 0.849 0.925

Precision 0.896 1.000 0.865 0.974 0.934

Recall 0.966 1.000 0.984 0.752 0.926

Accuracy 0.901

VGG16 F1-Score 0.875 0.957 0.929 0.880 0.910

Precision 0.96 1.000 0.901 0.890 0.938

Recall 0.804 0.917 0.958 0.871 0.887

Accuracy 0.905

InceptionResNet F1-Score 0.918 1.000 0.947 0.927 0.948

Precision 0.926 1.000 0.995 0.871 0.948

Recall 0.911 1.000 0.903 0.991 0.951

Accuracy 0.936

ResNet

 

 

F1-Score 0.920 1.000 0.959 0.940 0.955

Precision 0.936 1.000 0.945 0.954 0.959

Recall 0.905 1.000 0.973 0.926 0.951

Accuracy 0.947

MobileNet

 

 

F1-Score 0.907 1.000 0.967 0.938 0.953

Precision 0.842 1.000 0.972 0.965 0.945

Recall 0.983 1.000 0.963 0.913 0.965

Accuracy 0.948

EfficientNetB0

 

 

F1-Score 0.948 1.000 0.969 0.951 0.967

Precision 0.921 1.000 0.964 0.970 0.964

Recall 0.978 1.000 0.973 0.933 0.971

Accuracy 0.960

EfficientNetV2S F1-Score 0.986 1.000 0.982 0.977 0.986

  Precision 1.000 1.000 0.976 0.979 0.989

  Recall 0.972 1.000 0.987 0.975 0.983

  Accuracy         0.981
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performance align closely over time, indicating that the model is 
able to generalize well to unseen data. The absence of significant 
gaps between the training and validation metrics further supports 
the model’s robustness and its ability to avoid overfitting during 
training. The confusion matrix in Figure 5 further highlights the 
model’s classification effectiveness across all classes. Based on the 
confusion matrix, we observe that the model performs very well on 
most classes, with a few exceptions. Class 0 (healthy) is correctly 
identified with high accuracy, showing 174 true positives, but there 
are small misclassifications with 4 instances in- correctly predicted 
as class 2 and 1 instance as class 3. For Class 1 (mild cognitive 
impairment), the model struggles more, with 12 true positives 
and no instances misclassified into other classes, indicating that the 
model might find it more challenging to distinguish mild cognitive 
impairment from other stages. Class 2 (Alzheimer’s) is identified 
with a high degree of accuracy, with only 8 instances misclassified 
as class 3, which is a relatively low number compared to the total 
of 632 true positives. Similarly, Class 3 (severe Alzheimer’s) is also 
well recognized, with 437 true positives and 11 instances incorrectly 
classified as class 2. The difficulties observed with class 1 and the 

small misclassifications between classes 2 and 3 could stem from 
the overlap in symptoms or features between the different stages 
of Alzheimer’s, which might make these stages harder for the 
model to differentiate clearly.

Results of efficientNetV2S at different learning rates

Table 4 presents the performance metrics of the EfficientNetV2S 
model across three learning rates: 0.01, 0.001, and 0.0001. The 
metrics include F1- score, precision, recall for each class, macro 
averages, and overall accuracy.

At a learning rate of 0.01, the model achieved a respectable 
accuracy of 0.940, with Class 1 attaining perfect precision and 
recall scores. However, performance in Classes 0, 2, and 3 was 
slightly lower, resulting in a macro average F1-score of 0.956. 
Reducing the learning rate to 0.001 yielded improved accuracy at 
0.977, alongside enhancements in macro average F1- score and 
precision, indicating the model’s increased stability and consistency 
across classes. The optimal performance occurred at a learning rate 
of 0.0001, where the model achieved the highest accuracy of 

Figure 4. Training and validation loss and accuracy curves for EfficientNetV2S model.

Figure 5. Confusion matrix for EfficientNetV2S model classification results.
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0.981, with consistently high F1- scores across all classes. This 
setting also resulted in the best macro average precision (0.989) 
and F1-score (0.986), demonstrating that a lower learning rate 
allowed the model to converge more effectively and achieve 
superior performance across all evaluation metrics. This section 
comprehensively evaluates the effectiveness of various pre- trained 
deep learning models, focusing particularly on the EfficientNetV2S 
model for Alzheimer’s disease detection. Metrics such as 
accuracy, precision, recall, and F1-score are used to benchmark 
model performance, offering insights into both overall efficiency 
and class-specific outcomes. EfficientNetV2S emerges as the best-
performing model, achieving the highest accuracy (0.981) and 
macro F1-score (0.986). Its strong precision-recall balance across all 
classes underlines its robustness for this medical classification task.

The comparative analysis highlights the relative strengths 
and weaknesses of other models like ResNet, MobileNet, and 
EfficientNetB0, which show commendable but comparatively 
lower performance, while simpler architectures like VGG16 and 
InceptionV3 lag behind in accuracy and class-specific metrics. 
The detailed results emphasize the efficiency of EfficientNetV2S 
in feature extraction and generalization. This study not only 
demonstrates the superiority of EfficientNetV2S but also 
showcases its potential applicability in real-world Alzheimer’s 
detection scenarios, setting a high benchmark for future research 
in medical imaging classification.

Conclusions

This study presents a novel approach to Alzheimer’s stage 
classification using the EfficientNetV2S model with transfer 
learning. The model achieved impressive performance, with an 
overall accuracy of 98.1%, a macro-average F1-score of 98.6%, and 
precision and recall values of 98.9% and 98.3%, respectively. These 
results highlight the ability of the EfficientNetV2S architecture to 
handle the complexities of Alzheimer’s stage prediction effectively. 
Moreover, the model outperformed well-known architectures 
such as VGG16, ResNet, MobileNet, and EfficientNetB0, with 
consistent improvements in classification accuracy across all stages 
of the disease. The results confirm the strength of using advanced 
deep learning architectures in medical imaging tasks. Future 
studies could investigate integrating multimodal data, such 
as clinical history and biomarkers, to complement MRI-based 
predictions. Additionally, longitudinal analysis of MRI scans to 
track disease progression and refine staging predictions offers a 

promising direction. Exploring cross-domain applications of the 
EfficientNetV2S model for other neurodegenerative diseases or 
medical imaging challenges could further validate its versatility 
and effectiveness.
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