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Commentary

Over the past two decades, global rise in insulin resistance, obesity, and metabolic syndrome has 
led to a corresponding increase in nonalcoholic fatty liver disease (NAFLD) [1]. Particularly, NAFLD 
represents the hepatic manifestation of metabolic syndrome and is characterized by hepatic fat 
accumulation exceeding 5% in the absence of excessive alcohol consumption, hepatotoxic medication 
use, or other established liver diseases such as viral hepatitis [2]. Functionally, NAFLD encompasses 
two primary subtypes - (i) nonalcoholic fatty liver (NAFL), also known as metabolic dysfunction-
associated steatotic liver (MASL), and (ii) nonalcoholic steatohepatitis (NASH), now known as 
metabolic dysfunction-associated steatohepatitis (MASH) [3]. NASH/MASH is increasingly referred 
to as metabolic dysfunction-associated steatotic liver disease (MASLD) in the current literature. 
Global prevalence of NAFLD ranges from 20% to 30%, with higher incidence rates documented 
in the Middle East, South Asia, and Southeast Asia [4–7]. Prevalence of NAFLD increases with age, 
particularly in post-menopausal women [8]. Current estimates indicate that NAFLD has reached 
epidemic proportions, affecting approximately 30.2% of all adults, 57.5% of adults with obesity, 
14.3% of children, and 38.0% of children with obesity as of 2023 [9]. These figures translate to 
over 2.4 billion adults and 315 million children worldwide as of 2023, a number that has been 
steadily increasing and is projected to rise further. Figure 1 schematically illustrates various aspects of 
nonalcoholic fatty liver disease (NAFLD).

Excessive energy intake from saturated fats, fructose, sugar-sweetened beverages, and refined 
carbohydrates is linked to weight gain and obesity—key contributors to NAFLD development 
[10]. Nut consumption has been contraindicated in NAFLD management, while prolonged soft 
drink intake shows prospective association with markers of liver injury, particularly elevated alanine 
aminotransferase (ALT) levels—an indicator of liver inflammation that may develop following 
NAFLD onset [11,12]. Healthy diet, in comparison to weight reduction, is recommended for the 
management of NAFLD [13]. Emerging therapeutic approaches include pegozafermin, a PEGylated 
form of fibroblast growth factor 21 (FGF21), currently in Phase 3 clinical trials. As a master metabolic 
regulator, FGF21 ameliorates hypertriglyceridemia, insulin resistance, obesity, and NAFLD through 
receptor-mediated mechanisms [14].

Various animal models have been developed to investigate NAFLD pathogenesis and the 
progression to steatohepatitis (NASH). These models incorporate either genetic modifications or 
dietary manipulations. Genetic models include sterol regulatory element binding protein (SREBP) 
transgenic mice, as well as Ob/ob, Db/db, KK-Ay, PTEN-null, PPARα-knockout, AOX-deficient, and 
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MTA1A-deficient mice. Dietary models utilize excessive cholesterol 
or fructose supplementation, or methionine- and choline-deficient 
diets [15]. These animal studies underscore nutrition’s critical role 
in NAFLD development, particularly among diabetic and obese 
older adults. Beyond caloric content, dietary contamination with 
persistent organic pollutants (POPs), including organochlorine 
(OC) insecticides, many of which function as endocrine-disrupting 
chemicals (EDCs), has emerged as a significant concern in 
NAFLD pathogenesis. Animal studies show that exposure to these 
environmental contaminants may contribute to fat accumulation 
in liver. Oxychlordane level is correlated with NAFLD in humans 
while other OC insecticides were not directly associated with 

NAFLD. However, pesticides, like p, p-DDT, p’p’-DDE are linked 
to increase in BMI, triglycerides, insulin resistance, and reductions 
in HDL cholesterol, ailments very common to NAFLD—NAFLD 
is common to individuals with obesity, metabolic syndrome, and 
insulin resistance [16]. Serum ALT levels serve as one biomarker 
for monitoring NAFLD, though with limitations. Population 
studies reveal that low-level exposures to environmental toxicants 
demonstrate dose-dependent associations with elevated ALT levels 
and increased odds ratios for suspected NAFLD in the general 
U.S. adult population [17]. These environmental toxicants include 
polychlorinated biphenyls (PCB), phthalates, bisphenol A, mercury, 
lead, and cadmium are known risk factors of NAFLD while limited 

  

Figure 1. Schematic illustration of various aspects of nonalcoholic fatty liver disease (NAFLD).
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link between PFAS and NAFLD warrants further research [18,19]. 
Data from NHANES (2003–2004) indicate significantly elevated 
liver enzyme levels among individuals with the highest PCB and 
OC insecticide exposures. Accumulating epidemiological and 
toxicological evidence supports associations between environmental 
chemical exposures, particularly PCBs, and NAFLD development 
[20]. The levels of ALT are not confirmed markers of NALFD; 
however, its levels are increased during liver injury, alcoholic 
fatty liver disease, and viral liver infection [21,22]. Consequently, 
using ALT levels to monitor fatty liver disease following industrial 
chemical exposure has limited reliability [23,24]. The established 
links between mercury, lead, and liver disease suggest that multiple 
environmental contaminants may act synergistically, creating 
conditions that promote hepatic steatosis [25–27].

Exposure to environmental chemicals, such as OC insecticides 
and other pesticides, are linked to the incidences of diabetes and are 
components involved in the development of NAFLD. Older women 
who handled pesticides for agricultural activities in Iowa and North 
Carolina were found to report higher incidence of diabetes [28]. In 
addition to OC insecticides, specifically dieldrin, and potentially 
dioxin-contaminated herbicides, 2,4,5-T and 2,4,5-TP, demonstrated 
associations with diabetes [29,30]. Besides OC insecticide, exposure 
to certain organophosphates (OP) also increases the risk of diabetes 
[28]. Similarly, presence of OC insecticide correlated with the risk 
of diabetes among North Indian population [31]. Higher levels 
of β-hexachlorocyclohexane (γ-HCH), dieldrin, and p,p’-DDE, a 
metabolite of p,p’-DDT, were found in the prediabetes and newly 
detected diabetic groups as compared to normal glucose tolerance 
group [31]. The accidental and occupational exposure are reported 
to modify glucose metabolism, therefore increased risk of type 2 
diabetes, and insulin resistance [32,33]. The prevalence of diabetes 
among people exposed to OP correlated well with the hemoglobin 
A1c diabetic levels, while chronic treatment of mice with OP for 180 
days produced glucose intolerance [34]. 

Many of the POPs are endocrine disruptors with possible 
link to development of fatty liver [35]. Animal exposure studies 
with perfluoralkyl acids (PFAAs), perfluorooctanoic acid (PFOA), 
perfluorooctane sulfonate (PFOS), and perfluorononanoicacid 
(PFNA) induce hepatic steatosis [36,37]. Industrial exposure with 
vinyl chloride increases the sensitivity of hepatosteatosis after high fat 
diet [18]. Non-POPs, industrial chemicals, such as drugs for chronic 
usage (e.g., amiodarone, valproic acid, tetracycline, methotrexate, 
and corticosteroids) are implicated in hepatosteatosis in humans 
[38–41].

Taken all, current epidemiological surveys inadequately 
elucidate the complex etiology underlying the burgeoning incidence 
of diabetes and its relationship to NAFLD. The confluence of POP 
exposure, industrial chemical contamination, antibiotic usage, and 
medications for cardiovascular disease appear to increase hepatic 
lipid accumulation risk, particularly in the context of contemporary 
overnutrition. Weight loss management through glucagon-like 
peptide-1 and glucose-dependent insulinotropic polypeptide 
receptor agonist therapy not only improves glycemic control but 
also reduces hepatic fat content. However, comprehensive animal 
studies examining defined chemical mixtures are needed to establish 
definitive links between exposures to environmental chemical mixture 
and NAFLD development. The worldwide prevalence of NAFLD 
suggests significant environmental contributions, particularly given 

the widespread application of OCs, POPs, and OPs. Biological 
researcher must investigate the combined effects of OC/POP/OP 
mixture exposure in overnutrition settings to demonstrate whether 
concurrent nutritional and environmental toxicant/EDC exposures 
can induce NAFLD. While genetic factors undoubtedly contribute 
to disease susceptibility, the relatively recent emergence of dietary 
contaminants that were absent a century ago may represent a 
critical, modifiable risk factor for NAFLD development. Thorough 
investigation of these environmental-nutritional interactions could 
enable risk remediation through exposure reduction strategies and 
informed development of targeted therapeutic interventions against 
chemically induced hepatic steatosis.
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