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Commentary

Emerging hallmarks of GEMINS5 in
neurodevelopmental disease
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Ochoa, CSIC, Spain GEMINS5 is a modular RNA-binding protein responsible for the recognition of snRNAs through its WD40

domain placed at the N-terminus. A dimerization module at the central region of the protein acts as a
hub for protein-protein interaction, and a non-canonical RNA-binding domain is placed towards the
C-terminus. Recent studies reported loss of function Gemin5 biallelic variants which develop cerebellar
ataxia, hypotonia and neurodevelopmental delay, indicating that GEMIN5 deficiency is detrimental for
survival. This commentary highlights the functional and structural features of GEMIN5 and how this
information contributes to the understanding of protein malfunction.
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which permits unrestricted use, GEMINS was first identified as a member of the survival of motor neurons (SMN) complex in
distribution, and reproduction in any human cells [1]. This macromolecular complex, formed by SMN, GEMINs 2-8 and unr-interacting
medium, provided t_he original author protein (UNRIP) [2], is responsible for the biogenesis of small nuclear ribonucleoprotein (snRNP)
and source are credited. complexes, the major components of the spliceosome machinery [3]. In this complex, GEMINS5
recognizes the snRNA site (5'-AAUUUUUG-3’) and delivers snRNAs to the SMN complex allowing
Sm core assembly in the cytoplasm [4,5], prior to the import of SMN and snRNPs into the nucleus
[6]. Remarkably, low levels of SMN protein are associated with spinal muscular atrophy (SMA),
a neurodegenerative disease caused by survival motor neuwron 1 (SMN1) deficiency [7]. This deficit
contributes to inefficient spliceosomal snRNPs biogenesis and perturbation in alternative splicing
events relevant for motor neuron function and maintenance [8,9].

Background on Functional and Structural Features of GEMIN5

Clinical variants specifically affecting the Gemin5 gene have been recently described [10, reviewed
in 11,12]. Interestingly, GEMIN5 pathological variants jeopardize alternative splicing [13]. Moreover,
homozygous GEMINS5 variants generated in induced pluripotent stem cells (iPSC)-derived neurons
show snRNP assembly deficit, resulting in global splicing defects [14]. High levels of GEMIN5
expression upregulate alternative splicing (AS) events relative to normal expression levels, being exon
skipping the most frequent type of AS event. Remarkably, identification of the mRNAs associated with
heavy polysomes indicated that a significant fraction of the AS mRNAs is engaged in translationally
active polysomes [15]. How GEMINS upregulation takes over the abnormal consequences on AS
splicing remains unknown. However, it is plausible that high levels of GEMINS5 favor gathering
of intermediate complexes with GEMIN3 and GEMIN4, threatening the assembly of the SMN
complex [16].

GEMINS is a modular protein, comprising the WD40 at the N-terminus, a tetratricopeptide
repeat (TPR) dimerization module in the central region, and a non-canonical RNA binding site

(RBS) at the C-terminus [17] (Figure 1). The WD40 domain consists of two seven-bladed
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propellers, which recognize the Sm site and the m’G cap of pre-
snRNAs [18,19]. Mutations within residues of the helixes of the
TPR module destabilize the dimer conformation, leading to protein
dysfunction [20,21]. Evolutionarily conserved aromatic and positive
charged amino acids within the RBS domain are critical for RNA
recognition [22]. Furthermore, the three-dimensional structure
of the half C-terminal region underscores an oligomer complex,
consisting of a dimer of pentamers [23]. The decamer architecture
unveiled a cavity that includes positively charged residues of the
TPR in front of RBS residues, involved in RNA-binding. This
macromolecular structure suggests a role as an assembly platform,
presumably relevant for its function and vulnerability to mutation.
Nevertheless, since the three-dimensional structure of the full-length
GEMINS5 protein is not known, this question should be addressed
in future studies.

Findings of the Regulatory Roles of GEMIN5
Beyond its role in snRNPs assembly [4,5], GEMINS5 exerts

an important role in translation regulation by interacting with
specific mRNAs [24-27]. Furthermore, the RBS1 moiety within
the RBS region promotes translation of its own mRNA [28],
counteracting the negative effect of GEMINS5 on protein synthesis
[24]. The regulatory role of GEMINS in translation has been further
investigated by identifying the mRNAs associated with polysomes
in Gemin5 silenced cells [29]. GEMINS enhances the translation of
mRNAs encoding core cellular machinery (e.g., ribosomal proteins
and histones), while it represses transcripts for signaling molecules
(e.g., kinases) and membrane proteins, suggesting the implication of
GEMINS in cellular metabolism by direct or indirect mechanisms.

Besides the ribosome binding ability of GEMINS5 [30], separate
domains of this protein interact with distinct components of cellular
networks depending upon the capacity of the protein stretch to
oligomerize with the endogenous protein [31]. Dimerization
mutants, as well as those affecting the phosphorylation state of
the TPR module disrupt the GEMIN5 interactome [21,32,33].
Moreover, the RNA-binding intensity of GEMINS is enhanced in
response to poly I:C treatment, a dsSRNA mimic which activates
signaling pathways. Likewise, treatment of cells with kinase
inhibitors turns back the GEMIN5 RNA-binding strength to
its baseline level, suggesting that ERK1/2 and CK2 influence the
phosphorylation level of GEMIN5 [32]. Nevertheless, due to the

high number of phosphoresidues found under different conditions
(www.phosphosite.org), it is likely that additional kinases are
involved in GEMIN5 post-translation modification. This finding
adds a new layer of regulation for this essential protein, likely
modulating GEMINS5 function in response to cellular cues, the
dysregulation of which might contribute to disease.

Insights of Gemin5 Variants Associated with

Neurodevelopmental Disease

The essential function of GEMINS is consistent with the
embryonic lethal phenotype of model animal systems [10,34,35].
In humans, GEMINS5 is encoded by a single gene, located in the
chromosome 5q33. The primary transcript comprises 28 exons
encoding a 170 kDa protein, expressed in all human tissues. In the
last years, mutations in Gemin5 gene have been detected in patients
with neurodevelopmental disorders, compatible with the expression
of a defective protein [10,14,21]. Patients harboring Gemin5
biallelic variants display distinct degrees of cerebellar atrophy, motor
disfunction, ataxia, cognitive delay, and hypotonia. Cerebellar
atrophy is observed in most patients, suggesting that this is a
specific phenotypic trait associated with Gemin5 variants. The term
“neurodevelopmental disorder with cerebellar atrophy and motor
dysfunction” (NEDCAM) has been proposed to describe the clinical
disorders associated with homozygous or compound heterozygous
mutations in Gemin5 gene [14]. This autosomal recessive disorder is
characterized by global developmental delay with prominent motor
abnormalities, mainly axial hypotonia, gait ataxia, and appendicular
spasticity. Patients have cognitive impairment and speech delay;
brain imaging shows cerebellar atrophy. Remarkably, the Gemin5
neurodevelopmental ataxia spectrum differs from the neuromuscular
symptoms caused in SMA patients by deficiencies of the SMN
protein, characterized by muscle weakness and atrophy, scoliosis,
breathing problems and hypotonia. These differences support
the proposition that GEMIN5 deficiency leads to a distinctive
neurodevelopmental disease.

The vast majority of the currently reported variants affect the
dimerization module or combine mutations in the TPR with the
WD40 or the RBS domains (Figure 1), highlighting the relevance of
maintaining the TPR-dependent oligomeric architecture for normal
protein function. Accordingly, our studies using both the R1016C
and D1019D replacements, which are located on a loop between
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Figure 1. Schematic representation of GEMIN5 modular domains. Gemin5 variants associated with neurodevelopmental disorders are colored

according to the domain affected.
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helixes 12 and 13 with their side chains involved in a network of
electrostatic interactions, induce conformational changes on the
homodimer structure, disrupting the regulatory functions of this
protein [21]. In the particular case of R1016C, the recessive mutation
in one allele is accompanied by either a truncated version, a frameshift
or an intron variant in the other allele. In other patients, the second
allele contains a mutant on the WD40, the TPR or the RBS domains
(Figure 1). Besides R1016C, several variants appear recurrently in
different patients (H923D, 19882 D1019E, or L1367P), supporting

a key role of these residues in protein malfunction.

The disease spectrum associated with GEMINS deficiency
has recently increased with the identification of additional clinical
variants, consequently highlighting the relevance of the dimerization
domain for the physiological functions of this protein [36-39].
Intellectual disability, cerebellar atrophy, motor dysfunction and
speech impairment were associated to D1054/A1055delinsE in
one of the alpha helixes of the TPR module [37]. Another study
conducted in fibroblasts generated from two patients with Gemin5
variants K742*/R1016C and R1016C/S411H* reports a decrease
in CoQ,, biosynthesis compared to fibroblast from controls. This
finding prompted the treatment of patients with CoQ,, leading to
partial recovery following long-treatment [38]. However, whether
this treatment will work for other patients remains elusive. Other
examples of disease spectrum are found in patients with infantile
developmental and epileptic encephalopathies [39]. These patients
carry biallelic variants affecting the TPR and the RBS domains,
expanding the disorders associated with Gemin5 mutations. It is
likely that in the near future a deeper knowledge of the protein
activities will help to better understand the phenotypic spectrum of
Gemin5 variants.

Future Directions

'This commentary highlights the hallmarks of GEMINS5, a protein
with key roles in spliccosome assembly and regulation of translation.
Identification of the WD40 domain as the snRNAs interacting region
provided the basis for the molecular function of GEMINS. Later
on, the structural features of the TPR dimerization module and the
non-canonical RBS served as a central point for recognizing Gemin5
variants in patients developing neurodevelopmental disorders, which
were defective in protein oligomerization. Since GEMINS5 has been
shown to oligomerize, it is likely that the expression of frameshift
and termination variants might perturb normal protein folding. In
turn, these alterations might disrupt the ability of GEMINS5 to form
a complex with snRNP proteins and exert physiological functions,
ultimately leading to neurological disorders. Future work should
determine whether patient derived variants disrupt the decamer
structure and its proposed RNA-binding cavity. Additionally,
abnormal GEMINS5 function might affect translation of mRNAs
either ubiquitously or in a tissue-specific manner.

GEMINS5 variants disrupt a distinct set of transcripts compared
to SMA patients, implying different molecular mechanisms related to
defects in SMN or GEMINS. However, establishing a link between
cerebellar atrophy and Gemin5 loss of function is an arduous task.
A key challenge is to identify whether cerebellar atrophy stems
from defective snRNP assembly in specific neuronal transcripts,
dysregulated translation of a subset of mRNAs critical for cerebellar
function or a combination of both. Integrating functional and
structural studies with clinical and functional genomics can improve
the diagnosis of Gemin5 patients, although uncovering the structure,

mechanisms, and functions of this protein within the context of
human disease is challenging. To bridge this gap, the use of patient
derived iPSC neurons or novel animal models can be useful.
Therefore, structural and functional studies of Gemin5 variants
identified in patients, in conjunction with exhaustive identification
of the clinical traits, should open new avenues to explore the
molecular mechanisms involved in GEMIN5 malfunction, and
eventually help in the development of potential therapeutic targets.
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